Cargando…
Conditional Deep Gaussian Processes: Empirical Bayes Hyperdata Learning
It is desirable to combine the expressive power of deep learning with Gaussian Process (GP) in one expressive Bayesian learning model. Deep kernel learning showed success as a deep network used for feature extraction. Then, a GP was used as the function model. Recently, it was suggested that, albeit...
Autores principales: | Lu, Chi-Ken, Shafto, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618322/ https://www.ncbi.nlm.nih.gov/pubmed/34828085 http://dx.doi.org/10.3390/e23111387 |
Ejemplares similares
-
Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning
por: Lu, Chi-Ken, et al.
Publicado: (2021) -
Cardiotocography analysis by empirical dynamic modeling and Gaussian processes
por: Feng, Guanchao, et al.
Publicado: (2023) -
Bayes and empirical Bayes methods for data analysis /
por: Carlin, Bradley P.
Publicado: (2000) -
Bayes and empirical Bayes methods for data analysis
por: Carlin, Bradley P.
Publicado: (1998) -
Empirical Bayes methods
por: Maritz, J S, et al.
Publicado: (2018)