Cargando…
Multi-Hop Question Generation Using Hierarchical Encoding-Decoding and Context Switch Mechanism
Neural auto-regressive sequence-to-sequence models have been dominant in text generation tasks, especially the question generation task. However, neural generation models suffer from the global and local semantic semantic drift problems. Hence, we propose the hierarchical encoding–decoding mechanism...
Autores principales: | Ji, Tianbo, Lyu, Chenyang, Cao, Zhichao, Cheng, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618393/ https://www.ncbi.nlm.nih.gov/pubmed/34828147 http://dx.doi.org/10.3390/e23111449 |
Ejemplares similares
-
QAScore—An Unsupervised Unreferenced Metric for the Question Generation Evaluation
por: Ji, Tianbo, et al.
Publicado: (2022) -
Hierarchical Encoder-Decoder With Soft Label-Decomposition for Mitochondria Segmentation in EM Images
por: Luo, Zhengrong, et al.
Publicado: (2021) -
On Multi-Hop Decode-and-Forward Cooperative Relaying for Industrial Wireless Sensor Networks
por: Ai, Yun, et al.
Publicado: (2017) -
A hierarchical temporal attention-based LSTM encoder-decoder model for individual mobility prediction
por: Li, Fa, et al.
Publicado: (2020) -
DAM: Hierarchical Adaptive Feature Selection Using Convolution Encoder Decoder Network for Strawberry Segmentation
por: Ilyas, Talha, et al.
Publicado: (2021)