Cargando…
Optimizing Few-Shot Learning Based on Variational Autoencoders
Despite the importance of few-shot learning, the lack of labeled training data in the real world makes it extremely challenging for existing machine learning methods because this limited dataset does not well represent the data variance. In this research, we suggest employing a generative approach u...
Autores principales: | Wei, Ruoqi, Mahmood, Ausif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618453/ https://www.ncbi.nlm.nih.gov/pubmed/34828088 http://dx.doi.org/10.3390/e23111390 |
Ejemplares similares
-
FewJoint: few-shot learning for joint dialogue understanding
por: Hou, Yutai, et al.
Publicado: (2022) -
Learning few-shot imitation as cultural transmission
por: Bhoopchand, Avishkar, et al.
Publicado: (2023) -
Meta-Learning for Few-Shot Plant Disease Detection
por: Chen, Liangzhe, et al.
Publicado: (2021) -
Few-shot learning: temporal scaling in behavioral and dopaminergic learning
por: Burke, Dennis A, et al.
Publicado: (2023) -
High-Dimensional Separability for One- and Few-Shot Learning
por: Gorban, Alexander N., et al.
Publicado: (2021)