Cargando…

Thermal Analysis of Metal-Organic Precursors for Functional Cu:ΝiOx Hole Transporting Layer in Inverted Perovskite Solar Cells: Role of Solution Combustion Chemistry in Cu:ΝiOx Thin Films Processing

Low temperature solution combustion synthesis emerges as a facile method for the synthesis of functional metal oxides thin films for electronic applications. We study the solution combustion synthesis process of Cu:NiO(x) using different molar ratios (w/o, 0.1 and 1.5) of fuel acetylacetone (Acac) t...

Descripción completa

Detalles Bibliográficos
Autores principales: Ioakeimidis, Apostolos, Papadas, Ioannis T., Koutsouroubi, Eirini D., Armatas, Gerasimos S., Choulis, Stelios A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618520/
https://www.ncbi.nlm.nih.gov/pubmed/34835837
http://dx.doi.org/10.3390/nano11113074
Descripción
Sumario:Low temperature solution combustion synthesis emerges as a facile method for the synthesis of functional metal oxides thin films for electronic applications. We study the solution combustion synthesis process of Cu:NiO(x) using different molar ratios (w/o, 0.1 and 1.5) of fuel acetylacetone (Acac) to oxidizer (Cu, Ni Nitrates) as a function of thermal annealing temperatures 150, 200, and 300 °C. The solution combustion synthesis process, in both thin films and bulk Cu:NiO(x), is investigated. Thermal analysis studies using TGA and DTA reveal that the Cu:NiO(x) thin films show a more gradual mass loss while the bulk Cu:NiO(x) exhibits a distinct combustion process. The thin films can crystallize to Cu:NiO(x) at an annealing temperature of 300 °C, irrespective of the Acac/Oxidizer ratio, whereas lower annealing temperatures (150 and 200 °C) produce amorphous materials. A detail characterization study of solution combustion synthesized Cu:NiO(x), including XPS, UV-Vis, AFM, and Contact angle measurements, is presented. Finally, 50 nm Cu:NiO(x) thin films are introduced as HTLs within the inverted perovskite solar cell device architecture. The Cu:NiO(x) HTL annealed at 150 and 200 °C provided PVSCs with limited functionality, whereas efficient triple-cation Cs(0.04)(MA(0.17)FA(0.83))(0.96) Pb(I(0.83)Br(0.17))(3)-based PVSCs achieved for Cu:NiO(x) HTLs for annealing temperature of 300 °C.