Cargando…
Thermal Analysis of Metal-Organic Precursors for Functional Cu:ΝiOx Hole Transporting Layer in Inverted Perovskite Solar Cells: Role of Solution Combustion Chemistry in Cu:ΝiOx Thin Films Processing
Low temperature solution combustion synthesis emerges as a facile method for the synthesis of functional metal oxides thin films for electronic applications. We study the solution combustion synthesis process of Cu:NiO(x) using different molar ratios (w/o, 0.1 and 1.5) of fuel acetylacetone (Acac) t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618520/ https://www.ncbi.nlm.nih.gov/pubmed/34835837 http://dx.doi.org/10.3390/nano11113074 |
_version_ | 1784604767546245120 |
---|---|
author | Ioakeimidis, Apostolos Papadas, Ioannis T. Koutsouroubi, Eirini D. Armatas, Gerasimos S. Choulis, Stelios A. |
author_facet | Ioakeimidis, Apostolos Papadas, Ioannis T. Koutsouroubi, Eirini D. Armatas, Gerasimos S. Choulis, Stelios A. |
author_sort | Ioakeimidis, Apostolos |
collection | PubMed |
description | Low temperature solution combustion synthesis emerges as a facile method for the synthesis of functional metal oxides thin films for electronic applications. We study the solution combustion synthesis process of Cu:NiO(x) using different molar ratios (w/o, 0.1 and 1.5) of fuel acetylacetone (Acac) to oxidizer (Cu, Ni Nitrates) as a function of thermal annealing temperatures 150, 200, and 300 °C. The solution combustion synthesis process, in both thin films and bulk Cu:NiO(x), is investigated. Thermal analysis studies using TGA and DTA reveal that the Cu:NiO(x) thin films show a more gradual mass loss while the bulk Cu:NiO(x) exhibits a distinct combustion process. The thin films can crystallize to Cu:NiO(x) at an annealing temperature of 300 °C, irrespective of the Acac/Oxidizer ratio, whereas lower annealing temperatures (150 and 200 °C) produce amorphous materials. A detail characterization study of solution combustion synthesized Cu:NiO(x), including XPS, UV-Vis, AFM, and Contact angle measurements, is presented. Finally, 50 nm Cu:NiO(x) thin films are introduced as HTLs within the inverted perovskite solar cell device architecture. The Cu:NiO(x) HTL annealed at 150 and 200 °C provided PVSCs with limited functionality, whereas efficient triple-cation Cs(0.04)(MA(0.17)FA(0.83))(0.96) Pb(I(0.83)Br(0.17))(3)-based PVSCs achieved for Cu:NiO(x) HTLs for annealing temperature of 300 °C. |
format | Online Article Text |
id | pubmed-8618520 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86185202021-11-27 Thermal Analysis of Metal-Organic Precursors for Functional Cu:ΝiOx Hole Transporting Layer in Inverted Perovskite Solar Cells: Role of Solution Combustion Chemistry in Cu:ΝiOx Thin Films Processing Ioakeimidis, Apostolos Papadas, Ioannis T. Koutsouroubi, Eirini D. Armatas, Gerasimos S. Choulis, Stelios A. Nanomaterials (Basel) Article Low temperature solution combustion synthesis emerges as a facile method for the synthesis of functional metal oxides thin films for electronic applications. We study the solution combustion synthesis process of Cu:NiO(x) using different molar ratios (w/o, 0.1 and 1.5) of fuel acetylacetone (Acac) to oxidizer (Cu, Ni Nitrates) as a function of thermal annealing temperatures 150, 200, and 300 °C. The solution combustion synthesis process, in both thin films and bulk Cu:NiO(x), is investigated. Thermal analysis studies using TGA and DTA reveal that the Cu:NiO(x) thin films show a more gradual mass loss while the bulk Cu:NiO(x) exhibits a distinct combustion process. The thin films can crystallize to Cu:NiO(x) at an annealing temperature of 300 °C, irrespective of the Acac/Oxidizer ratio, whereas lower annealing temperatures (150 and 200 °C) produce amorphous materials. A detail characterization study of solution combustion synthesized Cu:NiO(x), including XPS, UV-Vis, AFM, and Contact angle measurements, is presented. Finally, 50 nm Cu:NiO(x) thin films are introduced as HTLs within the inverted perovskite solar cell device architecture. The Cu:NiO(x) HTL annealed at 150 and 200 °C provided PVSCs with limited functionality, whereas efficient triple-cation Cs(0.04)(MA(0.17)FA(0.83))(0.96) Pb(I(0.83)Br(0.17))(3)-based PVSCs achieved for Cu:NiO(x) HTLs for annealing temperature of 300 °C. MDPI 2021-11-15 /pmc/articles/PMC8618520/ /pubmed/34835837 http://dx.doi.org/10.3390/nano11113074 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ioakeimidis, Apostolos Papadas, Ioannis T. Koutsouroubi, Eirini D. Armatas, Gerasimos S. Choulis, Stelios A. Thermal Analysis of Metal-Organic Precursors for Functional Cu:ΝiOx Hole Transporting Layer in Inverted Perovskite Solar Cells: Role of Solution Combustion Chemistry in Cu:ΝiOx Thin Films Processing |
title | Thermal Analysis of Metal-Organic Precursors for Functional Cu:ΝiOx Hole Transporting Layer in Inverted Perovskite Solar Cells: Role of Solution Combustion Chemistry in Cu:ΝiOx Thin Films Processing |
title_full | Thermal Analysis of Metal-Organic Precursors for Functional Cu:ΝiOx Hole Transporting Layer in Inverted Perovskite Solar Cells: Role of Solution Combustion Chemistry in Cu:ΝiOx Thin Films Processing |
title_fullStr | Thermal Analysis of Metal-Organic Precursors for Functional Cu:ΝiOx Hole Transporting Layer in Inverted Perovskite Solar Cells: Role of Solution Combustion Chemistry in Cu:ΝiOx Thin Films Processing |
title_full_unstemmed | Thermal Analysis of Metal-Organic Precursors for Functional Cu:ΝiOx Hole Transporting Layer in Inverted Perovskite Solar Cells: Role of Solution Combustion Chemistry in Cu:ΝiOx Thin Films Processing |
title_short | Thermal Analysis of Metal-Organic Precursors for Functional Cu:ΝiOx Hole Transporting Layer in Inverted Perovskite Solar Cells: Role of Solution Combustion Chemistry in Cu:ΝiOx Thin Films Processing |
title_sort | thermal analysis of metal-organic precursors for functional cu:νiox hole transporting layer in inverted perovskite solar cells: role of solution combustion chemistry in cu:νiox thin films processing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618520/ https://www.ncbi.nlm.nih.gov/pubmed/34835837 http://dx.doi.org/10.3390/nano11113074 |
work_keys_str_mv | AT ioakeimidisapostolos thermalanalysisofmetalorganicprecursorsforfunctionalcunioxholetransportinglayerininvertedperovskitesolarcellsroleofsolutioncombustionchemistryincunioxthinfilmsprocessing AT papadasioannist thermalanalysisofmetalorganicprecursorsforfunctionalcunioxholetransportinglayerininvertedperovskitesolarcellsroleofsolutioncombustionchemistryincunioxthinfilmsprocessing AT koutsouroubieirinid thermalanalysisofmetalorganicprecursorsforfunctionalcunioxholetransportinglayerininvertedperovskitesolarcellsroleofsolutioncombustionchemistryincunioxthinfilmsprocessing AT armatasgerasimoss thermalanalysisofmetalorganicprecursorsforfunctionalcunioxholetransportinglayerininvertedperovskitesolarcellsroleofsolutioncombustionchemistryincunioxthinfilmsprocessing AT choulissteliosa thermalanalysisofmetalorganicprecursorsforfunctionalcunioxholetransportinglayerininvertedperovskitesolarcellsroleofsolutioncombustionchemistryincunioxthinfilmsprocessing |