Cargando…
Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals
Background. A new instrumentation exploiting magneto-dynamic technology (mallet) proposed for implant site preparation was investigated. Methods. In the tibias of three minipigs, two sites were prepared by mallet and two by drill technique. Primary stability (ISQ) was detected after implant position...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618607/ https://www.ncbi.nlm.nih.gov/pubmed/34832347 http://dx.doi.org/10.3390/ma14226945 |
_version_ | 1784604788567048192 |
---|---|
author | Schierano, Gianmario Baldi, Domenico Peirone, Bruno Mauthe von Degerfeld, Mitzy Navone, Roberto Bragoni, Alberto Colombo, Jacopo Autelli, Riccardo Muzio, Giuliana |
author_facet | Schierano, Gianmario Baldi, Domenico Peirone, Bruno Mauthe von Degerfeld, Mitzy Navone, Roberto Bragoni, Alberto Colombo, Jacopo Autelli, Riccardo Muzio, Giuliana |
author_sort | Schierano, Gianmario |
collection | PubMed |
description | Background. A new instrumentation exploiting magneto-dynamic technology (mallet) proposed for implant site preparation was investigated. Methods. In the tibias of three minipigs, two sites were prepared by mallet and two by drill technique. Primary stability (ISQ) was detected after implant positioning (T0) and at 14 days (T14). X-rays and computed tomography were performed. At T14, bone samples were utilized for histological and biomolecular analyses. Results. In mallet sites, histological evaluations evidenced a significant increase in the newly formed bone, osteoblast number, and a smaller quantity of fibrous tissue. These results agree with the significant BMP-4 augmentation and the positive trend in other osteogenic factors (biological and radiological investigations). Major, albeit IL-10-controlled, inflammation was present. For both techniques, at T14 a significant ISQ increase was evidenced, but no significant difference was observed at T0 and T14 between the mallet and drill techniques. In mallet sites, lateral bone condensation was observed on computed tomography. Conclusions. Using biological, histological, clinical, and radiological analyses, this study first shows that the mallet technique is effective for implant site preparation. Based on its ability to cause osseocondensation and improve newly formed bone, mallet technology should be chosen in all clinical cases of poor bone quality. |
format | Online Article Text |
id | pubmed-8618607 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86186072021-11-27 Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals Schierano, Gianmario Baldi, Domenico Peirone, Bruno Mauthe von Degerfeld, Mitzy Navone, Roberto Bragoni, Alberto Colombo, Jacopo Autelli, Riccardo Muzio, Giuliana Materials (Basel) Article Background. A new instrumentation exploiting magneto-dynamic technology (mallet) proposed for implant site preparation was investigated. Methods. In the tibias of three minipigs, two sites were prepared by mallet and two by drill technique. Primary stability (ISQ) was detected after implant positioning (T0) and at 14 days (T14). X-rays and computed tomography were performed. At T14, bone samples were utilized for histological and biomolecular analyses. Results. In mallet sites, histological evaluations evidenced a significant increase in the newly formed bone, osteoblast number, and a smaller quantity of fibrous tissue. These results agree with the significant BMP-4 augmentation and the positive trend in other osteogenic factors (biological and radiological investigations). Major, albeit IL-10-controlled, inflammation was present. For both techniques, at T14 a significant ISQ increase was evidenced, but no significant difference was observed at T0 and T14 between the mallet and drill techniques. In mallet sites, lateral bone condensation was observed on computed tomography. Conclusions. Using biological, histological, clinical, and radiological analyses, this study first shows that the mallet technique is effective for implant site preparation. Based on its ability to cause osseocondensation and improve newly formed bone, mallet technology should be chosen in all clinical cases of poor bone quality. MDPI 2021-11-17 /pmc/articles/PMC8618607/ /pubmed/34832347 http://dx.doi.org/10.3390/ma14226945 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Schierano, Gianmario Baldi, Domenico Peirone, Bruno Mauthe von Degerfeld, Mitzy Navone, Roberto Bragoni, Alberto Colombo, Jacopo Autelli, Riccardo Muzio, Giuliana Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals |
title | Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals |
title_full | Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals |
title_fullStr | Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals |
title_full_unstemmed | Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals |
title_short | Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals |
title_sort | biomolecular, histological, clinical, and radiological analyses of dental implant bone sites prepared using magnetic mallet technology: a pilot study in animals |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618607/ https://www.ncbi.nlm.nih.gov/pubmed/34832347 http://dx.doi.org/10.3390/ma14226945 |
work_keys_str_mv | AT schieranogianmario biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT baldidomenico biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT peironebruno biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT mauthevondegerfeldmitzy biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT navoneroberto biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT bragonialberto biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT colombojacopo biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT autelliriccardo biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals AT muziogiuliana biomolecularhistologicalclinicalandradiologicalanalysesofdentalimplantbonesitespreparedusingmagneticmallettechnologyapilotstudyinanimals |