Cargando…

Photoswitchable Zirconium MOF for Light-Driven Hydrogen Storage

Here, we report a new photosensitive metal–organic framework (MOF) that was constructed via the modification of UiO-66-NH(2) with diarylethene molecules (DAE, 4-(5-Methoxy-1,2-dimethyl-1H-indol-3-yl)-3-(2,5-dimethylthiophen-3-yl)-4-furan-2,5-dione). The material that was obtained was a highly crysta...

Descripción completa

Detalles Bibliográficos
Autores principales: Butova, Vera V., Burachevskaya, Olga A., Podshibyakin, Vitaly A., Shepelenko, Evgenii N., Tereshchenko, Andrei A., Shapovalova, Svetlana O., Il’in, Oleg I., Bren’, Vladimir A., Soldatov, Alexander V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618608/
https://www.ncbi.nlm.nih.gov/pubmed/34833350
http://dx.doi.org/10.3390/polym13224052
Descripción
Sumario:Here, we report a new photosensitive metal–organic framework (MOF) that was constructed via the modification of UiO-66-NH(2) with diarylethene molecules (DAE, 4-(5-Methoxy-1,2-dimethyl-1H-indol-3-yl)-3-(2,5-dimethylthiophen-3-yl)-4-furan-2,5-dione). The material that was obtained was a highly crystalline porous compound. The photoresponse of the modified MOF was observed via UV–Vis and IR spectroscopy. Most of the DAE molecules inside of the UiO-66-pores had an open conformation after synthesis. However, the equilibrium was able to be shifted further toward an open conformation using visible light irradiation with a wavelength of 520 nm. Conversely, UV-light with a wavelength of 450 nm initiated the transformation of the photoresponsive moieties inside of the pores to a closed modification. We have shown that this transformation could be used to stimulate hydrogen adsorption–desorption processes. Specifically, visible light irradiation increased the H(2) capacity of modified MOF, while UV-light decreased it. A similar hybrid material with DAE moieties in the UiO-66 scaffold was applied for hydrogen storage for the first time. Additionally, the obtained results are promising for smart H(2) storage that is able to be managed via light stimuli.