Cargando…
Studying Corrosion Using Miniaturized Particle Attached Working Electrodes and the Nafion Membrane
We developed a new approach to attach particles onto a conductive layer as a working electrode (WE) in a microfluidic electrochemical cell with three electrodes. Nafion, an efficient proton transfer molecule, is used to form a thin protection layer to secure particle electrodes. Spin coating is used...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618753/ https://www.ncbi.nlm.nih.gov/pubmed/34832825 http://dx.doi.org/10.3390/mi12111414 |
_version_ | 1784604823756210176 |
---|---|
author | Son, Jiyoung Buck, Edgar C. Riechers, Shawn L. Tripathi, Shalini Strange, Lyndi E. Engelhard, Mark H. Yu, Xiao-Ying |
author_facet | Son, Jiyoung Buck, Edgar C. Riechers, Shawn L. Tripathi, Shalini Strange, Lyndi E. Engelhard, Mark H. Yu, Xiao-Ying |
author_sort | Son, Jiyoung |
collection | PubMed |
description | We developed a new approach to attach particles onto a conductive layer as a working electrode (WE) in a microfluidic electrochemical cell with three electrodes. Nafion, an efficient proton transfer molecule, is used to form a thin protection layer to secure particle electrodes. Spin coating is used to develop a thin and even layer of Nafion membrane. The effects of Nafion (5 wt% 20 wt%) and spinning rates were evaluated using multiple sets of replicates. The electrochemical performance of various devices was demonstrated. Additionally, the electrochemical performance of the devices is used to select and optimize fabrication conditions. The results show that a higher spinning rate and a lower Nafion concentration (5 wt%) induce a better performance, using cerium oxide (CeO(2)) particles as a testing model. The WE surfaces were characterized using atomic force microscopy (AFM), scanning electron microscopy-focused ion beam (SEM-FIB), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and X-ray photoelectron spectroscopy (XPS). The comparison between the pristine and corroded WE surfaces shows that Nafion is redistributed after potential is applied. Our results verify that Nafion membrane offers a reliable means to secure particles onto electrodes. Furthermore, the electrochemical performance is reliable and reproducible. Thus, this approach provides a new way to study more complex and challenging particles, such as uranium oxide, in the future. |
format | Online Article Text |
id | pubmed-8618753 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86187532021-11-27 Studying Corrosion Using Miniaturized Particle Attached Working Electrodes and the Nafion Membrane Son, Jiyoung Buck, Edgar C. Riechers, Shawn L. Tripathi, Shalini Strange, Lyndi E. Engelhard, Mark H. Yu, Xiao-Ying Micromachines (Basel) Article We developed a new approach to attach particles onto a conductive layer as a working electrode (WE) in a microfluidic electrochemical cell with three electrodes. Nafion, an efficient proton transfer molecule, is used to form a thin protection layer to secure particle electrodes. Spin coating is used to develop a thin and even layer of Nafion membrane. The effects of Nafion (5 wt% 20 wt%) and spinning rates were evaluated using multiple sets of replicates. The electrochemical performance of various devices was demonstrated. Additionally, the electrochemical performance of the devices is used to select and optimize fabrication conditions. The results show that a higher spinning rate and a lower Nafion concentration (5 wt%) induce a better performance, using cerium oxide (CeO(2)) particles as a testing model. The WE surfaces were characterized using atomic force microscopy (AFM), scanning electron microscopy-focused ion beam (SEM-FIB), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and X-ray photoelectron spectroscopy (XPS). The comparison between the pristine and corroded WE surfaces shows that Nafion is redistributed after potential is applied. Our results verify that Nafion membrane offers a reliable means to secure particles onto electrodes. Furthermore, the electrochemical performance is reliable and reproducible. Thus, this approach provides a new way to study more complex and challenging particles, such as uranium oxide, in the future. MDPI 2021-11-18 /pmc/articles/PMC8618753/ /pubmed/34832825 http://dx.doi.org/10.3390/mi12111414 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Son, Jiyoung Buck, Edgar C. Riechers, Shawn L. Tripathi, Shalini Strange, Lyndi E. Engelhard, Mark H. Yu, Xiao-Ying Studying Corrosion Using Miniaturized Particle Attached Working Electrodes and the Nafion Membrane |
title | Studying Corrosion Using Miniaturized Particle Attached Working Electrodes and the Nafion Membrane |
title_full | Studying Corrosion Using Miniaturized Particle Attached Working Electrodes and the Nafion Membrane |
title_fullStr | Studying Corrosion Using Miniaturized Particle Attached Working Electrodes and the Nafion Membrane |
title_full_unstemmed | Studying Corrosion Using Miniaturized Particle Attached Working Electrodes and the Nafion Membrane |
title_short | Studying Corrosion Using Miniaturized Particle Attached Working Electrodes and the Nafion Membrane |
title_sort | studying corrosion using miniaturized particle attached working electrodes and the nafion membrane |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618753/ https://www.ncbi.nlm.nih.gov/pubmed/34832825 http://dx.doi.org/10.3390/mi12111414 |
work_keys_str_mv | AT sonjiyoung studyingcorrosionusingminiaturizedparticleattachedworkingelectrodesandthenafionmembrane AT buckedgarc studyingcorrosionusingminiaturizedparticleattachedworkingelectrodesandthenafionmembrane AT riechersshawnl studyingcorrosionusingminiaturizedparticleattachedworkingelectrodesandthenafionmembrane AT tripathishalini studyingcorrosionusingminiaturizedparticleattachedworkingelectrodesandthenafionmembrane AT strangelyndie studyingcorrosionusingminiaturizedparticleattachedworkingelectrodesandthenafionmembrane AT engelhardmarkh studyingcorrosionusingminiaturizedparticleattachedworkingelectrodesandthenafionmembrane AT yuxiaoying studyingcorrosionusingminiaturizedparticleattachedworkingelectrodesandthenafionmembrane |