Cargando…

Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors

High spatio-angular resolution diffusion MRI (dMRI) has been shown to provide accurate identification of complex neuronal fiber configurations, albeit, at the cost of long acquisition times. We propose a method to recover intra-voxel fiber configurations at high spatio-angular resolution relying on...

Descripción completa

Detalles Bibliográficos
Autores principales: Pesce, Marica, Repetti, Audrey, Auría, Anna, Daducci, Alessandro, Thiran, Jean-Philippe, Wiaux, Yves
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618762/
https://www.ncbi.nlm.nih.gov/pubmed/34821857
http://dx.doi.org/10.3390/jimaging7110226
Descripción
Sumario:High spatio-angular resolution diffusion MRI (dMRI) has been shown to provide accurate identification of complex neuronal fiber configurations, albeit, at the cost of long acquisition times. We propose a method to recover intra-voxel fiber configurations at high spatio-angular resolution relying on a 3D kq-space under-sampling scheme to enable accelerated acquisitions. The inverse problem for the reconstruction of the fiber orientation distribution (FOD) is regularized by a structured sparsity prior promoting simultaneously voxel-wise sparsity and spatial smoothness of fiber orientation. Prior knowledge of the spatial distribution of white matter, gray matter, and cerebrospinal fluid is also leveraged. A minimization problem is formulated and solved via a stochastic forward–backward algorithm. Simulations and real data analysis suggest that accurate FOD mapping can be achieved from severe kq-space under-sampling regimes potentially enabling high spatio-angular resolution dMRI in the clinical setting.