Cargando…

Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors

Reliable tools for artefact rejection and signal classification are a must for cosmic ray detection experiments based on CMOS technology. In this paper, we analyse the fitness of several feature-based statistical classifiers for the classification of particle candidate hits in four categories: spots...

Descripción completa

Detalles Bibliográficos
Autores principales: Bar, Olaf, Bibrzycki, Łukasz, Niedźwiecki, Michał, Piekarczyk, Marcin, Rzecki, Krzysztof, Sośnicki, Tomasz, Stuglik, Sławomir, Frontczak, Michał, Homola, Piotr, Alvarez-Castillo, David E., Andersen, Thomas, Tursunov, Arman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618806/
https://www.ncbi.nlm.nih.gov/pubmed/34833793
http://dx.doi.org/10.3390/s21227718
_version_ 1784604836471242752
author Bar, Olaf
Bibrzycki, Łukasz
Niedźwiecki, Michał
Piekarczyk, Marcin
Rzecki, Krzysztof
Sośnicki, Tomasz
Stuglik, Sławomir
Frontczak, Michał
Homola, Piotr
Alvarez-Castillo, David E.
Andersen, Thomas
Tursunov, Arman
author_facet Bar, Olaf
Bibrzycki, Łukasz
Niedźwiecki, Michał
Piekarczyk, Marcin
Rzecki, Krzysztof
Sośnicki, Tomasz
Stuglik, Sławomir
Frontczak, Michał
Homola, Piotr
Alvarez-Castillo, David E.
Andersen, Thomas
Tursunov, Arman
author_sort Bar, Olaf
collection PubMed
description Reliable tools for artefact rejection and signal classification are a must for cosmic ray detection experiments based on CMOS technology. In this paper, we analyse the fitness of several feature-based statistical classifiers for the classification of particle candidate hits in four categories: spots, tracks, worms and artefacts. We use Zernike moments of the image function as feature carriers and propose a preprocessing and denoising scheme to make the feature extraction more efficient. As opposed to convolution neural network classifiers, the feature-based classifiers allow for establishing a connection between features and geometrical properties of candidate hits. Apart from basic classifiers we also consider their ensemble extensions and find these extensions generally better performing than basic versions, with an average recognition accuracy of 88%.
format Online
Article
Text
id pubmed-8618806
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86188062021-11-27 Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors Bar, Olaf Bibrzycki, Łukasz Niedźwiecki, Michał Piekarczyk, Marcin Rzecki, Krzysztof Sośnicki, Tomasz Stuglik, Sławomir Frontczak, Michał Homola, Piotr Alvarez-Castillo, David E. Andersen, Thomas Tursunov, Arman Sensors (Basel) Article Reliable tools for artefact rejection and signal classification are a must for cosmic ray detection experiments based on CMOS technology. In this paper, we analyse the fitness of several feature-based statistical classifiers for the classification of particle candidate hits in four categories: spots, tracks, worms and artefacts. We use Zernike moments of the image function as feature carriers and propose a preprocessing and denoising scheme to make the feature extraction more efficient. As opposed to convolution neural network classifiers, the feature-based classifiers allow for establishing a connection between features and geometrical properties of candidate hits. Apart from basic classifiers we also consider their ensemble extensions and find these extensions generally better performing than basic versions, with an average recognition accuracy of 88%. MDPI 2021-11-19 /pmc/articles/PMC8618806/ /pubmed/34833793 http://dx.doi.org/10.3390/s21227718 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bar, Olaf
Bibrzycki, Łukasz
Niedźwiecki, Michał
Piekarczyk, Marcin
Rzecki, Krzysztof
Sośnicki, Tomasz
Stuglik, Sławomir
Frontczak, Michał
Homola, Piotr
Alvarez-Castillo, David E.
Andersen, Thomas
Tursunov, Arman
Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
title Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
title_full Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
title_fullStr Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
title_full_unstemmed Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
title_short Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
title_sort zernike moment based classification of cosmic ray candidate hits from cmos sensors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618806/
https://www.ncbi.nlm.nih.gov/pubmed/34833793
http://dx.doi.org/10.3390/s21227718
work_keys_str_mv AT barolaf zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT bibrzyckiłukasz zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT niedzwieckimichał zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT piekarczykmarcin zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT rzeckikrzysztof zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT sosnickitomasz zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT stugliksławomir zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT frontczakmichał zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT homolapiotr zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT alvarezcastillodavide zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT andersenthomas zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT tursunovarman zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors