Cargando…
Artificial Intelligence—A Tool for Risk Assessment of Delayed-Graft Function in Kidney Transplant
Delayed-graft function (DGF) might be responsible for shorter graft survival. Therefore, a clinical tool predicting its occurrence is vital for the risk assessment of transplant outcomes. In a single-center study, we conducted data mining and machine learning experiments, resulting in DGF predictive...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618905/ https://www.ncbi.nlm.nih.gov/pubmed/34830526 http://dx.doi.org/10.3390/jcm10225244 |
Sumario: | Delayed-graft function (DGF) might be responsible for shorter graft survival. Therefore, a clinical tool predicting its occurrence is vital for the risk assessment of transplant outcomes. In a single-center study, we conducted data mining and machine learning experiments, resulting in DGF predictive models based on random forest classifiers (RF) and an artificial neural network called multi-layer perceptron (MLP). All designed models had four common input parameters, determining the best accuracy and discriminant ability: donor’s eGFR, recipient’s BMI, donor’s BMI, and recipient–donor weight difference. RF and MLP designs, using these parameters, achieved an accuracy of 84.38% and an area under curve (AUC) 0.84. The model additionally implementing a donor’s age, gender, and Kidney Donor Profile Index (KDPI) accomplished an accuracy of 93.75% and an AUC of 0.91. The other configuration with the estimated post-transplant survival (EPTS) and the kidney donor risk profile (KDRI) achieved an accuracy of 93.75% and an AUC of 0.92. Using machine learning, we were able to assess the risk of DGF in recipients after kidney transplant from a deceased donor. Our solution is scalable and can be improved during subsequent transplants. Based on the new data, the models can achieve better outcomes. |
---|