Cargando…
Artificial Neural Network Algorithms to Predict Resting Energy Expenditure in Critically Ill Children
Introduction: Accurate assessment of resting energy expenditure (REE) can guide optimal nutritional prescription in critically ill children. Indirect calorimetry (IC) is the gold standard for REE measurement, but its use is limited. Alternatively, REE estimates by predictive equations/formulae are o...
Autores principales: | Spolidoro, Giulia C. I., D’Oria, Veronica, De Cosmi, Valentina, Milani, Gregorio Paolo, Mazzocchi, Alessandra, Akhondi-Asl, Alireza, Mehta, Nilesh M., Agostoni, Carlo, Calderini, Edoardo, Grossi, Enzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618974/ https://www.ncbi.nlm.nih.gov/pubmed/34836053 http://dx.doi.org/10.3390/nu13113797 |
Ejemplares similares
-
Prediction of Resting Energy Expenditure in Children: May Artificial Neural Networks Improve Our Accuracy?
por: De Cosmi, Valentina, et al.
Publicado: (2020) -
The Metabolic Response to Stress and Infection in Critically Ill Children: The Opportunity of an Individualized Approach
por: De Cosmi, Valentina, et al.
Publicado: (2017) -
The Role of Lipids in Human Milk and Infant Formulae
por: Mazzocchi, Alessandra, et al.
Publicado: (2018) -
Alpha-Linolenic Acid and Cardiovascular Events: A Narrative Review
por: Bertoni, Camilla, et al.
Publicado: (2023) -
Dietary Patterns vs. Dietary Recommendations
por: De Cosmi, Valentina, et al.
Publicado: (2022)