Cargando…
Detecting Animal Contacts—A Deep Learning-Based Pig Detection and Tracking Approach for the Quantification of Social Contacts
The identification of social interactions is of fundamental importance for animal behavioral studies, addressing numerous problems like investigating the influence of social hierarchical structures or the drivers of agonistic behavioral disorders. However, the majority of previous studies often rely...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619108/ https://www.ncbi.nlm.nih.gov/pubmed/34833588 http://dx.doi.org/10.3390/s21227512 |
_version_ | 1784604910124269568 |
---|---|
author | Wutke, Martin Heinrich, Felix Das, Pronaya Prosun Lange, Anita Gentz, Maria Traulsen, Imke Warns, Friederike K. Schmitt, Armin Otto Gültas, Mehmet |
author_facet | Wutke, Martin Heinrich, Felix Das, Pronaya Prosun Lange, Anita Gentz, Maria Traulsen, Imke Warns, Friederike K. Schmitt, Armin Otto Gültas, Mehmet |
author_sort | Wutke, Martin |
collection | PubMed |
description | The identification of social interactions is of fundamental importance for animal behavioral studies, addressing numerous problems like investigating the influence of social hierarchical structures or the drivers of agonistic behavioral disorders. However, the majority of previous studies often rely on manual determination of the number and types of social encounters by direct observation which requires a large amount of personnel and economical efforts. To overcome this limitation and increase research efficiency and, thus, contribute to animal welfare in the long term, we propose in this study a framework for the automated identification of social contacts. In this framework, we apply a convolutional neural network (CNN) to detect the location and orientation of pigs within a video and track their movement trajectories over a period of time using a Kalman filter (KF) algorithm. Based on the tracking information, we automatically identify social contacts in the form of head–head and head–tail contacts. Moreover, by using the individual animal IDs, we construct a network of social contacts as the final output. We evaluated the performance of our framework based on two distinct test sets for pig detection and tracking. Consequently, we achieved a Sensitivity, Precision, and F1-score of 94.2%, 95.4%, and 95.1%, respectively, and a [Formula: see text] score of 94.4%. The findings of this study demonstrate the effectiveness of our keypoint-based tracking-by-detection strategy and can be applied to enhance animal monitoring systems. |
format | Online Article Text |
id | pubmed-8619108 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86191082021-11-27 Detecting Animal Contacts—A Deep Learning-Based Pig Detection and Tracking Approach for the Quantification of Social Contacts Wutke, Martin Heinrich, Felix Das, Pronaya Prosun Lange, Anita Gentz, Maria Traulsen, Imke Warns, Friederike K. Schmitt, Armin Otto Gültas, Mehmet Sensors (Basel) Article The identification of social interactions is of fundamental importance for animal behavioral studies, addressing numerous problems like investigating the influence of social hierarchical structures or the drivers of agonistic behavioral disorders. However, the majority of previous studies often rely on manual determination of the number and types of social encounters by direct observation which requires a large amount of personnel and economical efforts. To overcome this limitation and increase research efficiency and, thus, contribute to animal welfare in the long term, we propose in this study a framework for the automated identification of social contacts. In this framework, we apply a convolutional neural network (CNN) to detect the location and orientation of pigs within a video and track their movement trajectories over a period of time using a Kalman filter (KF) algorithm. Based on the tracking information, we automatically identify social contacts in the form of head–head and head–tail contacts. Moreover, by using the individual animal IDs, we construct a network of social contacts as the final output. We evaluated the performance of our framework based on two distinct test sets for pig detection and tracking. Consequently, we achieved a Sensitivity, Precision, and F1-score of 94.2%, 95.4%, and 95.1%, respectively, and a [Formula: see text] score of 94.4%. The findings of this study demonstrate the effectiveness of our keypoint-based tracking-by-detection strategy and can be applied to enhance animal monitoring systems. MDPI 2021-11-12 /pmc/articles/PMC8619108/ /pubmed/34833588 http://dx.doi.org/10.3390/s21227512 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wutke, Martin Heinrich, Felix Das, Pronaya Prosun Lange, Anita Gentz, Maria Traulsen, Imke Warns, Friederike K. Schmitt, Armin Otto Gültas, Mehmet Detecting Animal Contacts—A Deep Learning-Based Pig Detection and Tracking Approach for the Quantification of Social Contacts |
title | Detecting Animal Contacts—A Deep Learning-Based Pig Detection and Tracking Approach for the Quantification of Social Contacts |
title_full | Detecting Animal Contacts—A Deep Learning-Based Pig Detection and Tracking Approach for the Quantification of Social Contacts |
title_fullStr | Detecting Animal Contacts—A Deep Learning-Based Pig Detection and Tracking Approach for the Quantification of Social Contacts |
title_full_unstemmed | Detecting Animal Contacts—A Deep Learning-Based Pig Detection and Tracking Approach for the Quantification of Social Contacts |
title_short | Detecting Animal Contacts—A Deep Learning-Based Pig Detection and Tracking Approach for the Quantification of Social Contacts |
title_sort | detecting animal contacts—a deep learning-based pig detection and tracking approach for the quantification of social contacts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619108/ https://www.ncbi.nlm.nih.gov/pubmed/34833588 http://dx.doi.org/10.3390/s21227512 |
work_keys_str_mv | AT wutkemartin detectinganimalcontactsadeeplearningbasedpigdetectionandtrackingapproachforthequantificationofsocialcontacts AT heinrichfelix detectinganimalcontactsadeeplearningbasedpigdetectionandtrackingapproachforthequantificationofsocialcontacts AT daspronayaprosun detectinganimalcontactsadeeplearningbasedpigdetectionandtrackingapproachforthequantificationofsocialcontacts AT langeanita detectinganimalcontactsadeeplearningbasedpigdetectionandtrackingapproachforthequantificationofsocialcontacts AT gentzmaria detectinganimalcontactsadeeplearningbasedpigdetectionandtrackingapproachforthequantificationofsocialcontacts AT traulsenimke detectinganimalcontactsadeeplearningbasedpigdetectionandtrackingapproachforthequantificationofsocialcontacts AT warnsfriederikek detectinganimalcontactsadeeplearningbasedpigdetectionandtrackingapproachforthequantificationofsocialcontacts AT schmittarminotto detectinganimalcontactsadeeplearningbasedpigdetectionandtrackingapproachforthequantificationofsocialcontacts AT gultasmehmet detectinganimalcontactsadeeplearningbasedpigdetectionandtrackingapproachforthequantificationofsocialcontacts |