Cargando…

A Review of Structural Adhesive Joints in Hybrid Joining Processes

Hybrid joining (HJ) is the combination of two or more joining techniques to produce joints with enhanced properties in comparison to those obtained from their parent techniques. Their adoption is widespread (metal to metal joint, composite to composite and composite to metal) and is present in a vas...

Descripción completa

Detalles Bibliográficos
Autores principales: Maggiore, Sofia, Banea, Mariana D., Stagnaro, Paola, Luciano, Giorgio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619164/
https://www.ncbi.nlm.nih.gov/pubmed/34833260
http://dx.doi.org/10.3390/polym13223961
Descripción
Sumario:Hybrid joining (HJ) is the combination of two or more joining techniques to produce joints with enhanced properties in comparison to those obtained from their parent techniques. Their adoption is widespread (metal to metal joint, composite to composite and composite to metal) and is present in a vast range of applications including all industrial sectors, from automotive to aerospace, including naval, construction, mechanical and utilities. The objective of this literature review is to summarize the existing research on hybrid joining processes incorporating structural adhesives highlighting their field of application and to present the recent development in this field. To achieve this goal, the first part presents an introduction on the main class of adhesives, subdivided by their chemical nature (epoxy, polyurethane, acrylic and cyanoacrylate, anaerobic and high-temperature adhesives) The second part describes the most commonly used Hybrid Joining (HJ) techniques (mechanical fastening and adhesive bonding, welding processes and adhesive bonding) The third part of the review is about the application of adhesives in dependence of performance, advantage and disadvantage in the hybrid joining processes. Finally, conclusions and an outlook on critical challenges, future perspectives and research activities are summarized. It was concluded that the use of hybrid joining technology could be considered as a potential solution in various industries, in order to reduce the mass as well as the manufacturing cost.