Cargando…
S2A: Scale-Attention-Aware Networks for Video Super-Resolution
Convolutional Neural Networks (CNNs) have been widely used in video super-resolution (VSR). Most existing VSR methods focus on how to utilize the information of multiple frames, while neglecting the feature correlations of the intermediate features, thus limiting the feature expression of the models...
Autores principales: | Guo, Taian, Dai, Tao, Liu, Ling, Zhu, Zexuan, Xia, Shu-Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619237/ https://www.ncbi.nlm.nih.gov/pubmed/34828096 http://dx.doi.org/10.3390/e23111398 |
Ejemplares similares
-
A Lightweight Recurrent Grouping Attention Network for Video Super-Resolution
por: Zhu, Yonggui, et al.
Publicado: (2023) -
Multi-phase attention network for face super-resolution
por: Hu, Tao, et al.
Publicado: (2023) -
Attention Network with Information Distillation for Super-Resolution
por: Zang, Huaijuan, et al.
Publicado: (2022) -
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
por: Zhang, Min, et al.
Publicado: (2021) -
SASRT: Semantic-Aware Super-Resolution Transmission for Adaptive Video Streaming over Wireless Multimedia Sensor Networks
por: Guo, Jia, et al.
Publicado: (2019)