Cargando…
Intelligent Fault Diagnosis and Forecast of Time-Varying Bearing Based on Deep Learning VMD-DenseNet
Rolling bearings are important in rotating machinery and equipment. This research proposes variational mode decomposition (VMD)-DenseNet to diagnose faults in bearings. The research feature involves analyzing the Hilbert spectrum through VMD whereby the vibration signal is converted into an image. H...
Autor principal: | Lin, Shih-Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619351/ https://www.ncbi.nlm.nih.gov/pubmed/34833542 http://dx.doi.org/10.3390/s21227467 |
Ejemplares similares
-
Application Combining VMD and ResNet101 in Intelligent Diagnosis of Motor Faults
por: Lin, Shih-Lin
Publicado: (2021) -
Corn Harvester Bearing Fault Diagnosis Based on ABC-VMD and Optimized EfficientNet
por: Liu, Zhiyuan, et al.
Publicado: (2023) -
Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM
por: Zhou, Junbo, et al.
Publicado: (2022) -
An Efficient DenseNet-Based Deep Learning Model for Malware Detection
por: Hemalatha, Jeyaprakash, et al.
Publicado: (2021) -
Rolling Bearing Fault Diagnosis Based on VMD-MPE and PSO-SVM
por: Ye, Maoyou, et al.
Publicado: (2021)