Cargando…
Rotating Machinery Diagnosing in Non-Stationary Conditions with Empirical Mode Decomposition-Based Wavelet Leaders Multifractal Spectra
Diagnosing the condition of rotating machines by non-invasive methods is based on the analysis of dynamic signals from sensors mounted on the machine—such as vibration, velocity, or acceleration sensors; torque meters; force sensors; pressure sensors; etc. The article presents a new method combining...
Autores principales: | Komorska, Iwona, Puchalski, Andrzej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619393/ https://www.ncbi.nlm.nih.gov/pubmed/34833750 http://dx.doi.org/10.3390/s21227677 |
Ejemplares similares
-
Fault Diagnosing of Cycloidal Gear Reducer Using Statistical Features of Vibration Signal and Multifractal Spectra
por: Komorska, Iwona, et al.
Publicado: (2023) -
Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition
por: Lei, Yaguo, et al.
Publicado: (2013) -
Noise Eliminated Ensemble Empirical Mode Decomposition Scalogram Analysis for Rotating Machinery Fault Diagnosis
por: Faysal, Atik, et al.
Publicado: (2021) -
Multifractal and Chaotic Properties of Solar Wind at MHD and Kinetic Domains: An Empirical Mode Decomposition Approach
por: Alberti, Tommaso, et al.
Publicado: (2019) -
Removal of Dust Microelectric Signal Based on Empirical Mode Decomposition and Multifractal Detrended Fluctuation Analysis
por: Li, Jiming, et al.
Publicado: (2021)