Cargando…
A Deep Learning Approach with Data Augmentation to Predict Novel Spider Neurotoxic Peptides
As major components of spider venoms, neurotoxic peptides exhibit structural diversity, target specificity, and have great pharmaceutical potential. Deep learning may be an alternative to the laborious and time-consuming methods for identifying these peptides. However, the major hurdle in developing...
Autores principales: | Lee, Byungjo, Shin, Min Kyoung, Hwang, In-Wook, Jung, Junghyun, Shim, Yu Jeong, Kim, Go Woon, Kim, Seung Tae, Jang, Wonhee, Sung, Jung-Suk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619404/ https://www.ncbi.nlm.nih.gov/pubmed/34830173 http://dx.doi.org/10.3390/ijms222212291 |
Ejemplares similares
-
Identifying novel antimicrobial peptides from venom gland of spider Pardosa astrigera by deep multi-task learning
por: Lee, Byungjo, et al.
Publicado: (2022) -
Integrative genomic and transcriptomic analysis of genetic markers in Dupuytren’s disease
por: Jung, Junghyun, et al.
Publicado: (2019) -
Antibacterial and Anti-Inflammatory Effects of Novel Peptide Toxin from the Spider Pardosa astrigera
por: Shin, Min Kyoung, et al.
Publicado: (2020) -
Designing a Novel Functional Peptide With Dual Antimicrobial and Anti-inflammatory Activities via in Silico Methods
por: Shin, Min Kyoung, et al.
Publicado: (2022) -
In silico identification of novel antimicrobial peptides from the venom gland transcriptome of the spider Argiope bruennichi (Scopoli, 1772)
por: Shin, Min Kyoung, et al.
Publicado: (2023)