Cargando…
Recent Progress in Smart Electronic Nose Technologies Enabled with Machine Learning Methods
Machine learning methods enable the electronic nose (E-Nose) for precise odor identification with both qualitative and quantitative analysis. Advanced machine learning methods are crucial for the E-Nose to gain high performance and strengthen its capability in many applications, including robotics,...
Autores principales: | Ye, Zhenyi, Liu, Yuan, Li, Qiliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619411/ https://www.ncbi.nlm.nih.gov/pubmed/34833693 http://dx.doi.org/10.3390/s21227620 |
Ejemplares similares
-
Meat Quality Assessment by Electronic Nose (Machine Olfaction Technology)
por: Ghasemi-Varnamkhasti, Mahdi, et al.
Publicado: (2009) -
Enabling Technologies for Urban Smart Mobility: Recent Trends, Opportunities and Challenges
por: Paiva, Sara, et al.
Publicado: (2021) -
Research progress of electronic nose technology in exhaled breath disease analysis
por: Li, Ying, et al.
Publicado: (2023) -
Design and Validation of a Portable Machine Learning-Based Electronic Nose
por: Huang, Yixu, et al.
Publicado: (2021) -
Applications and Advances in Electronic-Nose Technologies
por: Wilson, Alphus D., et al.
Publicado: (2009)