Cargando…

Ferulic Acid and Salicylic Acid Foliar Treatments Reduce Short-Term Salt Stress in Chinese Cabbage by Increasing Phenolic Compounds Accumulation and Photosynthetic Performance

Salinity stress is one of the most damaging abiotic stresses to plants, causing disturbances in physiological, biochemical, and metabolic processes. The exogenous application of natural metabolites is a useful strategy to reduce the adverse effects of stress on crops. We investigated the effect of f...

Descripción completa

Detalles Bibliográficos
Autores principales: Linić, Ida, Mlinarić, Selma, Brkljačić, Lidija, Pavlović, Iva, Smolko, Ana, Salopek-Sondi, Branka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619474/
https://www.ncbi.nlm.nih.gov/pubmed/34834709
http://dx.doi.org/10.3390/plants10112346
_version_ 1784605001143812096
author Linić, Ida
Mlinarić, Selma
Brkljačić, Lidija
Pavlović, Iva
Smolko, Ana
Salopek-Sondi, Branka
author_facet Linić, Ida
Mlinarić, Selma
Brkljačić, Lidija
Pavlović, Iva
Smolko, Ana
Salopek-Sondi, Branka
author_sort Linić, Ida
collection PubMed
description Salinity stress is one of the most damaging abiotic stresses to plants, causing disturbances in physiological, biochemical, and metabolic processes. The exogenous application of natural metabolites is a useful strategy to reduce the adverse effects of stress on crops. We investigated the effect of foliar application of salicylic acid (SA) and ferulic acid (FA) (10–100 μM) on short-term salt-stressed (150 mM NaCl, 72 h) Chinese cabbage plants. Subsequently, proline level, photosynthetic performance, phenolic metabolites with special focus on selected phenolic acids (sinapic acid (SiA), FA, SA), flavonoids (quercetin (QUE), kaempferol (KAE)), and antioxidant activity were investigated in salt-stressed and phenolic acid-treated plants compared with the corresponding controls. Salt stress caused a significant increase in SA and proline contents, a decrease in phenolic compounds, antioxidant activity, and photosynthetic performance, especially due to the impairment of PSI function. SA and FA treatments, with a concentration of 10 μM, had attenuated effects on salt-stressed plants, causing a decrease in proline and SA level, and indicating that the plants suffered less metabolic disturbance. Polyphenolic compounds, especially FA, SiA, KAE, and QUE, were increased in FA and SA treatments in salt-stressed plants. Consequently, antioxidant activities were increased, and photosynthetic performances were improved. FA resulted in a better ameliorative effect on salt stress compared to SA.
format Online
Article
Text
id pubmed-8619474
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86194742021-11-27 Ferulic Acid and Salicylic Acid Foliar Treatments Reduce Short-Term Salt Stress in Chinese Cabbage by Increasing Phenolic Compounds Accumulation and Photosynthetic Performance Linić, Ida Mlinarić, Selma Brkljačić, Lidija Pavlović, Iva Smolko, Ana Salopek-Sondi, Branka Plants (Basel) Article Salinity stress is one of the most damaging abiotic stresses to plants, causing disturbances in physiological, biochemical, and metabolic processes. The exogenous application of natural metabolites is a useful strategy to reduce the adverse effects of stress on crops. We investigated the effect of foliar application of salicylic acid (SA) and ferulic acid (FA) (10–100 μM) on short-term salt-stressed (150 mM NaCl, 72 h) Chinese cabbage plants. Subsequently, proline level, photosynthetic performance, phenolic metabolites with special focus on selected phenolic acids (sinapic acid (SiA), FA, SA), flavonoids (quercetin (QUE), kaempferol (KAE)), and antioxidant activity were investigated in salt-stressed and phenolic acid-treated plants compared with the corresponding controls. Salt stress caused a significant increase in SA and proline contents, a decrease in phenolic compounds, antioxidant activity, and photosynthetic performance, especially due to the impairment of PSI function. SA and FA treatments, with a concentration of 10 μM, had attenuated effects on salt-stressed plants, causing a decrease in proline and SA level, and indicating that the plants suffered less metabolic disturbance. Polyphenolic compounds, especially FA, SiA, KAE, and QUE, were increased in FA and SA treatments in salt-stressed plants. Consequently, antioxidant activities were increased, and photosynthetic performances were improved. FA resulted in a better ameliorative effect on salt stress compared to SA. MDPI 2021-10-29 /pmc/articles/PMC8619474/ /pubmed/34834709 http://dx.doi.org/10.3390/plants10112346 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Linić, Ida
Mlinarić, Selma
Brkljačić, Lidija
Pavlović, Iva
Smolko, Ana
Salopek-Sondi, Branka
Ferulic Acid and Salicylic Acid Foliar Treatments Reduce Short-Term Salt Stress in Chinese Cabbage by Increasing Phenolic Compounds Accumulation and Photosynthetic Performance
title Ferulic Acid and Salicylic Acid Foliar Treatments Reduce Short-Term Salt Stress in Chinese Cabbage by Increasing Phenolic Compounds Accumulation and Photosynthetic Performance
title_full Ferulic Acid and Salicylic Acid Foliar Treatments Reduce Short-Term Salt Stress in Chinese Cabbage by Increasing Phenolic Compounds Accumulation and Photosynthetic Performance
title_fullStr Ferulic Acid and Salicylic Acid Foliar Treatments Reduce Short-Term Salt Stress in Chinese Cabbage by Increasing Phenolic Compounds Accumulation and Photosynthetic Performance
title_full_unstemmed Ferulic Acid and Salicylic Acid Foliar Treatments Reduce Short-Term Salt Stress in Chinese Cabbage by Increasing Phenolic Compounds Accumulation and Photosynthetic Performance
title_short Ferulic Acid and Salicylic Acid Foliar Treatments Reduce Short-Term Salt Stress in Chinese Cabbage by Increasing Phenolic Compounds Accumulation and Photosynthetic Performance
title_sort ferulic acid and salicylic acid foliar treatments reduce short-term salt stress in chinese cabbage by increasing phenolic compounds accumulation and photosynthetic performance
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619474/
https://www.ncbi.nlm.nih.gov/pubmed/34834709
http://dx.doi.org/10.3390/plants10112346
work_keys_str_mv AT linicida ferulicacidandsalicylicacidfoliartreatmentsreduceshorttermsaltstressinchinesecabbagebyincreasingphenoliccompoundsaccumulationandphotosyntheticperformance
AT mlinaricselma ferulicacidandsalicylicacidfoliartreatmentsreduceshorttermsaltstressinchinesecabbagebyincreasingphenoliccompoundsaccumulationandphotosyntheticperformance
AT brkljaciclidija ferulicacidandsalicylicacidfoliartreatmentsreduceshorttermsaltstressinchinesecabbagebyincreasingphenoliccompoundsaccumulationandphotosyntheticperformance
AT pavloviciva ferulicacidandsalicylicacidfoliartreatmentsreduceshorttermsaltstressinchinesecabbagebyincreasingphenoliccompoundsaccumulationandphotosyntheticperformance
AT smolkoana ferulicacidandsalicylicacidfoliartreatmentsreduceshorttermsaltstressinchinesecabbagebyincreasingphenoliccompoundsaccumulationandphotosyntheticperformance
AT salopeksondibranka ferulicacidandsalicylicacidfoliartreatmentsreduceshorttermsaltstressinchinesecabbagebyincreasingphenoliccompoundsaccumulationandphotosyntheticperformance