Cargando…

On the Role of Electrostatic Repulsion in Topological Defect-Driven Membrane Fission

Within a modified Langevin Poisson–Boltzmann model of electric double layers, we derived an analytical expression for osmotic pressure between two charged surfaces. The orientational ordering of the water dipoles as well as the space dependencies of electric potentials, electric fields, and osmotic...

Descripción completa

Detalles Bibliográficos
Autores principales: Gongadze, Ekaterina, Mesarec, Luka, Kralj, Samo, Kralj-Iglič, Veronika, Iglič, Aleš
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619715/
https://www.ncbi.nlm.nih.gov/pubmed/34832041
http://dx.doi.org/10.3390/membranes11110812
Descripción
Sumario:Within a modified Langevin Poisson–Boltzmann model of electric double layers, we derived an analytical expression for osmotic pressure between two charged surfaces. The orientational ordering of the water dipoles as well as the space dependencies of electric potentials, electric fields, and osmotic pressure between two charged spheres were taken into account in the model. Thus, we were able to capture the interaction between the parent cell and connected daughter vesicle or the interactions between neighbouring beads in necklace-like membrane protrusions. The predicted repulsion between them can facilitate the topological antidefect-driven fission of membrane daughter vesicles and the fission of beads of undulated membrane protrusions.