Cargando…
Gait Disorder Detection and Classification Method Using Inertia Measurement Unit for Augmented Feedback Training in Wearable Devices
Parkinson’s disease (PD) is a common neurodegenerative disease, one of the symptoms of which is a gait disorder, which decreases gait speed and cadence. Recently, augmented feedback training has been considered to achieve effective physical rehabilitation. Therefore, we have devised a numerical mode...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619777/ https://www.ncbi.nlm.nih.gov/pubmed/34833749 http://dx.doi.org/10.3390/s21227676 |
Sumario: | Parkinson’s disease (PD) is a common neurodegenerative disease, one of the symptoms of which is a gait disorder, which decreases gait speed and cadence. Recently, augmented feedback training has been considered to achieve effective physical rehabilitation. Therefore, we have devised a numerical modeling process and algorithm for gait detection and classification (GDC) that actively utilizes augmented feedback training. The numerical model converted each joint angle into a magnitude of acceleration (MoA) and a Z-axis angular velocity (ZAV) parameter. Subsequently, we confirmed the validity of both the GDC numerical modeling and algorithm. As a result, a higher gait detection and classification rate (GDCR) could be observed at a higher gait speed and lower acceleration threshold (AT) and gyroscopic threshold (GT). However, the pattern of the GDCR was ambiguous if the patient was affected by a gait disorder compared to a normal user. To utilize the relationships between the GDCR, AT, GT, and gait speed, we controlled the GDCR by using AT and GT as inputs, which we found to be a reasonable methodology. Moreover, the GDC algorithm could distinguish between normal people and people who suffered from gait disorders. Consequently, the GDC method could be used for rehabilitation and gait evaluation. |
---|