Cargando…
Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter
Conventional color filters selectively absorb a part of the backlight while reflecting or transmitting other light, resulting in the problem of low efficiency and energy wasting. For this problem, a new concept of fluorescence enhanced optical resonator was proposed and verified in this paper. The n...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619847/ https://www.ncbi.nlm.nih.gov/pubmed/34835579 http://dx.doi.org/10.3390/nano11112813 |
_version_ | 1784605083851292672 |
---|---|
author | Chen, Xiaochuan Liang, Pengxia Wu, Qian Tan, Qiaofeng Dong, Xue |
author_facet | Chen, Xiaochuan Liang, Pengxia Wu, Qian Tan, Qiaofeng Dong, Xue |
author_sort | Chen, Xiaochuan |
collection | PubMed |
description | Conventional color filters selectively absorb a part of the backlight while reflecting or transmitting other light, resulting in the problem of low efficiency and energy wasting. For this problem, a new concept of fluorescence enhanced optical resonator was proposed and verified in this paper. The new structure consists of structural color filter and light-conversion material. Specially, a thin film resonant cavity was designed, and InP/ZnSe/ZnS quantum dots were inserted inside the resonator. When illuminated by sunlight, the novel fluorescence enhanced optical resonator could not only reflect the specific light, but also convert absorbed energy into desired light, leading to the utilization efficiency improvement of solar energy. An all-dielectric red fluorescence enhanced optical resonator was fabricated, with peak equivalent reflectance up to 105%. Compared with a thin film resonator, the enhancement coefficient of the as-proposed structure is about 124%. The new optical structure can utilize solar source efficiently, showing application potential as the next generation of reflective color filters for display. |
format | Online Article Text |
id | pubmed-8619847 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86198472021-11-27 Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter Chen, Xiaochuan Liang, Pengxia Wu, Qian Tan, Qiaofeng Dong, Xue Nanomaterials (Basel) Communication Conventional color filters selectively absorb a part of the backlight while reflecting or transmitting other light, resulting in the problem of low efficiency and energy wasting. For this problem, a new concept of fluorescence enhanced optical resonator was proposed and verified in this paper. The new structure consists of structural color filter and light-conversion material. Specially, a thin film resonant cavity was designed, and InP/ZnSe/ZnS quantum dots were inserted inside the resonator. When illuminated by sunlight, the novel fluorescence enhanced optical resonator could not only reflect the specific light, but also convert absorbed energy into desired light, leading to the utilization efficiency improvement of solar energy. An all-dielectric red fluorescence enhanced optical resonator was fabricated, with peak equivalent reflectance up to 105%. Compared with a thin film resonator, the enhancement coefficient of the as-proposed structure is about 124%. The new optical structure can utilize solar source efficiently, showing application potential as the next generation of reflective color filters for display. MDPI 2021-10-23 /pmc/articles/PMC8619847/ /pubmed/34835579 http://dx.doi.org/10.3390/nano11112813 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Chen, Xiaochuan Liang, Pengxia Wu, Qian Tan, Qiaofeng Dong, Xue Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter |
title | Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter |
title_full | Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter |
title_fullStr | Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter |
title_full_unstemmed | Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter |
title_short | Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter |
title_sort | fluorescence enhanced optical resonator constituted of quantum dots and thin film resonant cavity for high-efficiency reflective color filter |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619847/ https://www.ncbi.nlm.nih.gov/pubmed/34835579 http://dx.doi.org/10.3390/nano11112813 |
work_keys_str_mv | AT chenxiaochuan fluorescenceenhancedopticalresonatorconstitutedofquantumdotsandthinfilmresonantcavityforhighefficiencyreflectivecolorfilter AT liangpengxia fluorescenceenhancedopticalresonatorconstitutedofquantumdotsandthinfilmresonantcavityforhighefficiencyreflectivecolorfilter AT wuqian fluorescenceenhancedopticalresonatorconstitutedofquantumdotsandthinfilmresonantcavityforhighefficiencyreflectivecolorfilter AT tanqiaofeng fluorescenceenhancedopticalresonatorconstitutedofquantumdotsandthinfilmresonantcavityforhighefficiencyreflectivecolorfilter AT dongxue fluorescenceenhancedopticalresonatorconstitutedofquantumdotsandthinfilmresonantcavityforhighefficiencyreflectivecolorfilter |