Cargando…

Synthetic Source Universal Domain Adaptation through Contrastive Learning

Universal domain adaptation (UDA) is a crucial research topic for efficient deep learning model training using data from various imaging sensors. However, its development is affected by unlabeled target data. Moreover, the nonexistence of prior knowledge of the source and target domain makes it more...

Descripción completa

Detalles Bibliográficos
Autor principal: Cho, Jungchan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620052/
https://www.ncbi.nlm.nih.gov/pubmed/34833615
http://dx.doi.org/10.3390/s21227539