Cargando…
Synthetic Source Universal Domain Adaptation through Contrastive Learning
Universal domain adaptation (UDA) is a crucial research topic for efficient deep learning model training using data from various imaging sensors. However, its development is affected by unlabeled target data. Moreover, the nonexistence of prior knowledge of the source and target domain makes it more...
Autor principal: | Cho, Jungchan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620052/ https://www.ncbi.nlm.nih.gov/pubmed/34833615 http://dx.doi.org/10.3390/s21227539 |
Ejemplares similares
-
Adaptive Contrastive Learning with Label Consistency for Source Data Free Unsupervised Domain Adaptation
por: Zhao, Xuejun, et al.
Publicado: (2022) -
Domain Adaptation of Synthetic Images for Wheat Head Detection
por: Hartley, Zane K. J., et al.
Publicado: (2021) -
Unsupervised multi-source domain adaptation with no observable source data
por: Jeon, Hyunsik, et al.
Publicado: (2021) -
Multi-EPL: Accurate multi-source domain adaptation
por: Lee, Seongmin, et al.
Publicado: (2021) -
Learning deep abdominal CT registration through adaptive loss weighting and synthetic data generation
por: Pérez de Frutos, Javier, et al.
Publicado: (2023)