Cargando…
Enhanced Thermal Conductivity of Polymer Composite by Adding Fishbone-like Silicon Carbide
The rapid development of chip technology has all put forward higher requirements for highly thermally conductive materials. In this work, a new type of material of Fishbone-like silicon carbide (SiC) material was used as the filler in a polyvinylidene fluoride (PVDF) matrix. The silicon carbide/poly...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620080/ https://www.ncbi.nlm.nih.gov/pubmed/34835656 http://dx.doi.org/10.3390/nano11112891 |
Sumario: | The rapid development of chip technology has all put forward higher requirements for highly thermally conductive materials. In this work, a new type of material of Fishbone-like silicon carbide (SiC) material was used as the filler in a polyvinylidene fluoride (PVDF) matrix. The silicon carbide/polyvinylidene fluoride (SiC/PVDF) composites were successfully prepared with different loading by a simple mixing method. The thermal conductivity of SiC/PVDF composite reached 0.92 W m(−1) K(−1), which is 470% higher than that of pure polymer. The results show that using the filler with a new structure to construct thermal conductivity networks is an effective way to improve the thermal conductivity of PVDF. This work provides a new idea for the further application in the field of electronic packaging. |
---|