Cargando…
AI-Enabled Algorithm for Automatic Classification of Sleep Disorders Based on Single-Lead Electrocardiogram
Healthy sleep is an essential physiological process for every individual to live a healthy life. Many sleep disorders both destroy the quality and decrease the duration of sleep. Thus, a convenient and accurate detection or classification method is important for screening and identifying sleep disor...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620146/ https://www.ncbi.nlm.nih.gov/pubmed/34829400 http://dx.doi.org/10.3390/diagnostics11112054 |
_version_ | 1784605151601885184 |
---|---|
author | Urtnasan, Erdenebayar Joo, Eun Yeon Lee, Kyu Hee |
author_facet | Urtnasan, Erdenebayar Joo, Eun Yeon Lee, Kyu Hee |
author_sort | Urtnasan, Erdenebayar |
collection | PubMed |
description | Healthy sleep is an essential physiological process for every individual to live a healthy life. Many sleep disorders both destroy the quality and decrease the duration of sleep. Thus, a convenient and accurate detection or classification method is important for screening and identifying sleep disorders. In this study, we proposed an AI-enabled algorithm for the automatic classification of sleep disorders based on a single-lead electrocardiogram (ECG). An AI-enabled algorithm—named a sleep disorder network (SDN)—was designed for automatic classification of four major sleep disorders, namely insomnia (INS), periodic leg movement (PLM), REM sleep behavior disorder (RBD), and nocturnal frontal-lobe epilepsy (NFE). The SDN was constructed using deep convolutional neural networks that can extract and analyze the complex and cyclic rhythm of sleep disorders that affect ECG patterns. The SDN consists of five layers, a 1D convolutional layer, and is optimized via dropout and batch normalization. The single-lead ECG signal was extracted from the 35 subjects with the control (CNT) and the four sleep disorder groups (seven subjects of each group) in the CAP Sleep Database. The ECG signal was pre-processed, segmented at 30 s intervals, and divided into the training, validation, and test sets consisting of 74,135, 18,534, and 23,168 segments, respectively. The constructed SDN was trained and evaluated using the CAP Sleep Database, which contains not only data on sleep disorders, but also data of the control group. The proposed SDN algorithm for the automatic classification of sleep disorders based on a single-lead ECG showed very high performances. We achieved F1 scores of 99.0%, 97.0%, 97.0%, 95.0%, and 98.0% for the CNT, INS, PLM, RBD, and NFE groups, respectively. We proposed an AI-enabled method for the automatic classification of sleep disorders based on a single-lead ECG signal. In addition, it represents the possibility of the sleep disorder classification using ECG only. The SDN can be a useful tool or an alternative screening method based on single-lead ECGs for sleep monitoring and screening. |
format | Online Article Text |
id | pubmed-8620146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86201462021-11-27 AI-Enabled Algorithm for Automatic Classification of Sleep Disorders Based on Single-Lead Electrocardiogram Urtnasan, Erdenebayar Joo, Eun Yeon Lee, Kyu Hee Diagnostics (Basel) Article Healthy sleep is an essential physiological process for every individual to live a healthy life. Many sleep disorders both destroy the quality and decrease the duration of sleep. Thus, a convenient and accurate detection or classification method is important for screening and identifying sleep disorders. In this study, we proposed an AI-enabled algorithm for the automatic classification of sleep disorders based on a single-lead electrocardiogram (ECG). An AI-enabled algorithm—named a sleep disorder network (SDN)—was designed for automatic classification of four major sleep disorders, namely insomnia (INS), periodic leg movement (PLM), REM sleep behavior disorder (RBD), and nocturnal frontal-lobe epilepsy (NFE). The SDN was constructed using deep convolutional neural networks that can extract and analyze the complex and cyclic rhythm of sleep disorders that affect ECG patterns. The SDN consists of five layers, a 1D convolutional layer, and is optimized via dropout and batch normalization. The single-lead ECG signal was extracted from the 35 subjects with the control (CNT) and the four sleep disorder groups (seven subjects of each group) in the CAP Sleep Database. The ECG signal was pre-processed, segmented at 30 s intervals, and divided into the training, validation, and test sets consisting of 74,135, 18,534, and 23,168 segments, respectively. The constructed SDN was trained and evaluated using the CAP Sleep Database, which contains not only data on sleep disorders, but also data of the control group. The proposed SDN algorithm for the automatic classification of sleep disorders based on a single-lead ECG showed very high performances. We achieved F1 scores of 99.0%, 97.0%, 97.0%, 95.0%, and 98.0% for the CNT, INS, PLM, RBD, and NFE groups, respectively. We proposed an AI-enabled method for the automatic classification of sleep disorders based on a single-lead ECG signal. In addition, it represents the possibility of the sleep disorder classification using ECG only. The SDN can be a useful tool or an alternative screening method based on single-lead ECGs for sleep monitoring and screening. MDPI 2021-11-05 /pmc/articles/PMC8620146/ /pubmed/34829400 http://dx.doi.org/10.3390/diagnostics11112054 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Urtnasan, Erdenebayar Joo, Eun Yeon Lee, Kyu Hee AI-Enabled Algorithm for Automatic Classification of Sleep Disorders Based on Single-Lead Electrocardiogram |
title | AI-Enabled Algorithm for Automatic Classification of Sleep Disorders Based on Single-Lead Electrocardiogram |
title_full | AI-Enabled Algorithm for Automatic Classification of Sleep Disorders Based on Single-Lead Electrocardiogram |
title_fullStr | AI-Enabled Algorithm for Automatic Classification of Sleep Disorders Based on Single-Lead Electrocardiogram |
title_full_unstemmed | AI-Enabled Algorithm for Automatic Classification of Sleep Disorders Based on Single-Lead Electrocardiogram |
title_short | AI-Enabled Algorithm for Automatic Classification of Sleep Disorders Based on Single-Lead Electrocardiogram |
title_sort | ai-enabled algorithm for automatic classification of sleep disorders based on single-lead electrocardiogram |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620146/ https://www.ncbi.nlm.nih.gov/pubmed/34829400 http://dx.doi.org/10.3390/diagnostics11112054 |
work_keys_str_mv | AT urtnasanerdenebayar aienabledalgorithmforautomaticclassificationofsleepdisordersbasedonsingleleadelectrocardiogram AT jooeunyeon aienabledalgorithmforautomaticclassificationofsleepdisordersbasedonsingleleadelectrocardiogram AT leekyuhee aienabledalgorithmforautomaticclassificationofsleepdisordersbasedonsingleleadelectrocardiogram |