Cargando…
Local Stability of McKean–Vlasov Equations Arising from Heterogeneous Gibbs Systems Using Limit of Relative Entropies
A family of heterogeneous mean-field systems with jumps is analyzed. These systems are constructed as a Gibbs measure on block graphs. When the total number of particles goes to infinity, the law of large numbers is shown to hold in a multi-class context, resulting in the weak convergence of the emp...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620427/ https://www.ncbi.nlm.nih.gov/pubmed/34828105 http://dx.doi.org/10.3390/e23111407 |
Sumario: | A family of heterogeneous mean-field systems with jumps is analyzed. These systems are constructed as a Gibbs measure on block graphs. When the total number of particles goes to infinity, the law of large numbers is shown to hold in a multi-class context, resulting in the weak convergence of the empirical vector towards the solution of a McKean–Vlasov system of equations. We then investigate the local stability of the limiting McKean–Vlasov system through the construction of a local Lyapunov function. We first compute the limit of adequately scaled relative entropy functions associated with the explicit stationary distribution of the N-particles system. Using a Laplace principle for empirical vectors, we show that the limit takes an explicit form. Then we demonstrate that this limit satisfies a descent property, which, combined with some mild assumptions shows that it is indeed a local Lyapunov function. |
---|