Cargando…
Evidence of G-Protein-Coupled Receptors (GPCR) in the Parasitic Protozoa Plasmodium falciparum—Sensing the Host Environment and Coupling within Its Molecular Signaling Toolkit
Throughout evolution, the need for single-celled organisms to associate and form a single cluster of cells has had several evolutionary advantages. In complex, multicellular organisms, each tissue or organ has a specialty and function that make life together possible, and the organism as a whole nee...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620569/ https://www.ncbi.nlm.nih.gov/pubmed/34830263 http://dx.doi.org/10.3390/ijms222212381 |
_version_ | 1784605250751037440 |
---|---|
author | Pereira, Pedro H. S. Garcia, Celia R. S. |
author_facet | Pereira, Pedro H. S. Garcia, Celia R. S. |
author_sort | Pereira, Pedro H. S. |
collection | PubMed |
description | Throughout evolution, the need for single-celled organisms to associate and form a single cluster of cells has had several evolutionary advantages. In complex, multicellular organisms, each tissue or organ has a specialty and function that make life together possible, and the organism as a whole needs to act in balance and adapt to changes in the environment. Sensory organs are essential for connecting external stimuli into a biological response, through the senses: sight, smell, taste, hearing, and touch. The G-protein-coupled receptors (GPCRs) are responsible for many of these senses and therefore play a key role in the perception of the cells’ external environment, enabling interaction and coordinated development between each cell of a multicellular organism. The malaria-causing protozoan parasite, Plasmodium falciparum, has a complex life cycle that is extremely dependent on a finely regulated cellular signaling machinery. In this review, we summarize strong evidence and the main candidates of GPCRs in protozoan parasites. Interestingly, one of these GPCRs is a sensor for K(+) shift in Plasmodium falciparum, PfSR25. Studying this family of proteins in P. falciparum could have a significant impact, both on understanding the history of the evolution of GPCRs and on finding new targets for antimalarials. |
format | Online Article Text |
id | pubmed-8620569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86205692021-11-27 Evidence of G-Protein-Coupled Receptors (GPCR) in the Parasitic Protozoa Plasmodium falciparum—Sensing the Host Environment and Coupling within Its Molecular Signaling Toolkit Pereira, Pedro H. S. Garcia, Celia R. S. Int J Mol Sci Review Throughout evolution, the need for single-celled organisms to associate and form a single cluster of cells has had several evolutionary advantages. In complex, multicellular organisms, each tissue or organ has a specialty and function that make life together possible, and the organism as a whole needs to act in balance and adapt to changes in the environment. Sensory organs are essential for connecting external stimuli into a biological response, through the senses: sight, smell, taste, hearing, and touch. The G-protein-coupled receptors (GPCRs) are responsible for many of these senses and therefore play a key role in the perception of the cells’ external environment, enabling interaction and coordinated development between each cell of a multicellular organism. The malaria-causing protozoan parasite, Plasmodium falciparum, has a complex life cycle that is extremely dependent on a finely regulated cellular signaling machinery. In this review, we summarize strong evidence and the main candidates of GPCRs in protozoan parasites. Interestingly, one of these GPCRs is a sensor for K(+) shift in Plasmodium falciparum, PfSR25. Studying this family of proteins in P. falciparum could have a significant impact, both on understanding the history of the evolution of GPCRs and on finding new targets for antimalarials. MDPI 2021-11-17 /pmc/articles/PMC8620569/ /pubmed/34830263 http://dx.doi.org/10.3390/ijms222212381 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Pereira, Pedro H. S. Garcia, Celia R. S. Evidence of G-Protein-Coupled Receptors (GPCR) in the Parasitic Protozoa Plasmodium falciparum—Sensing the Host Environment and Coupling within Its Molecular Signaling Toolkit |
title | Evidence of G-Protein-Coupled Receptors (GPCR) in the Parasitic Protozoa Plasmodium falciparum—Sensing the Host Environment and Coupling within Its Molecular Signaling Toolkit |
title_full | Evidence of G-Protein-Coupled Receptors (GPCR) in the Parasitic Protozoa Plasmodium falciparum—Sensing the Host Environment and Coupling within Its Molecular Signaling Toolkit |
title_fullStr | Evidence of G-Protein-Coupled Receptors (GPCR) in the Parasitic Protozoa Plasmodium falciparum—Sensing the Host Environment and Coupling within Its Molecular Signaling Toolkit |
title_full_unstemmed | Evidence of G-Protein-Coupled Receptors (GPCR) in the Parasitic Protozoa Plasmodium falciparum—Sensing the Host Environment and Coupling within Its Molecular Signaling Toolkit |
title_short | Evidence of G-Protein-Coupled Receptors (GPCR) in the Parasitic Protozoa Plasmodium falciparum—Sensing the Host Environment and Coupling within Its Molecular Signaling Toolkit |
title_sort | evidence of g-protein-coupled receptors (gpcr) in the parasitic protozoa plasmodium falciparum—sensing the host environment and coupling within its molecular signaling toolkit |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620569/ https://www.ncbi.nlm.nih.gov/pubmed/34830263 http://dx.doi.org/10.3390/ijms222212381 |
work_keys_str_mv | AT pereirapedrohs evidenceofgproteincoupledreceptorsgpcrintheparasiticprotozoaplasmodiumfalciparumsensingthehostenvironmentandcouplingwithinitsmolecularsignalingtoolkit AT garciaceliars evidenceofgproteincoupledreceptorsgpcrintheparasiticprotozoaplasmodiumfalciparumsensingthehostenvironmentandcouplingwithinitsmolecularsignalingtoolkit |