Cargando…
NeuRank: learning to rank with neural networks for drug–target interaction prediction
BACKGROUND: Experimental verification of a drug discovery process is expensive and time-consuming. Therefore, recently, the demand to more efficiently and effectively identify drug–target interactions (DTIs) has intensified. RESULTS: We treat the prediction of DTIs as a ranking problem and propose a...
Autores principales: | Wu, Xiujin, Zeng, Wenhua, Lin, Fan, Zhou, Xiuze |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620576/ https://www.ncbi.nlm.nih.gov/pubmed/34836495 http://dx.doi.org/10.1186/s12859-021-04476-y |
Ejemplares similares
-
DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank
por: Yuan, Qingjun, et al.
Publicado: (2016) -
PASSerRank: Prediction of Allosteric Sites with Learning to Rank
por: Tian, Hao, et al.
Publicado: (2023) -
Drug-Target Interaction Prediction Based on Adversarial Bayesian Personalized Ranking
por: Ye, Yihua, et al.
Publicado: (2021) -
Low-Rank Deep Convolutional Neural Network for Multitask Learning
por: Su, Fang, et al.
Publicado: (2019) -
Interactive online application for the prediction, ranking and prioritisation of drug targets in Schistosoma haematobium
por: Stroehlein, Andreas J., et al.
Publicado: (2018)