Cargando…
Vitamin A Transporters in Visual Function: A Mini Review on Membrane Receptors for Dietary Vitamin A Uptake, Storage, and Transport to the Eye
Vitamins are essential compounds obtained through diet that are necessary for normal development and function in an organism. One of the most important vitamins for human physiology is vitamin A, a group of retinoid compounds and carotenoids, which generally function as a mediator for cell growth, d...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620617/ https://www.ncbi.nlm.nih.gov/pubmed/34836244 http://dx.doi.org/10.3390/nu13113987 |
_version_ | 1784605263490187264 |
---|---|
author | Martin Ask, Nicasio Leung, Matthias Radhakrishnan, Rakesh Lobo, Glenn P. |
author_facet | Martin Ask, Nicasio Leung, Matthias Radhakrishnan, Rakesh Lobo, Glenn P. |
author_sort | Martin Ask, Nicasio |
collection | PubMed |
description | Vitamins are essential compounds obtained through diet that are necessary for normal development and function in an organism. One of the most important vitamins for human physiology is vitamin A, a group of retinoid compounds and carotenoids, which generally function as a mediator for cell growth, differentiation, immunity, and embryonic development, as well as serving as a key component in the phototransduction cycle in the vertebrate retina. For humans, vitamin A is obtained through the diet, where provitamin A carotenoids such as β-carotene from plants or preformed vitamin A such as retinyl esters from animal sources are absorbed into the body via the small intestine and converted into all-trans retinol within the intestinal enterocytes. Specifically, once absorbed, carotenoids are cleaved by carotenoid cleavage oxygenases (CCOs), such as Beta-carotene 15,15’-monooxygenase (BCO1), to produce all-trans retinal that subsequently gets converted into all-trans retinol. CRBP2 bound retinol is then converted into retinyl esters (REs) by the enzyme lecithin retinol acyltransferase (LRAT) in the endoplasmic reticulum, which is then packaged into chylomicrons and sent into the bloodstream for storage in hepatic stellate cells in the liver or for functional use in peripheral tissues such as the retina. All-trans retinol also travels through the bloodstream bound to retinol binding protein 4 (RBP4), where it enters cells with the assistance of the transmembrane transporters, stimulated by retinoic acid 6 (STRA6) in peripheral tissues or retinol binding protein 4 receptor 2 (RBPR2) in systemic tissues (e.g., in the retina and the liver, respectively). Much is known about the intake, metabolism, storage, and function of vitamin A compounds, especially with regard to its impact on eye development and visual function in the retinoid cycle. However, there is much to learn about the role of vitamin A as a transcription factor in development and cell growth, as well as how peripheral cells signal hepatocytes to secrete all-trans retinol into the blood for peripheral cell use. This article aims to review literature regarding the major known pathways of vitamin A intake from dietary sources into hepatocytes, vitamin A excretion by hepatocytes, as well as vitamin A usage within the retinoid cycle in the RPE and retina to provide insight on future directions of novel membrane transporters for vitamin A in retinal cell physiology and visual function. |
format | Online Article Text |
id | pubmed-8620617 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86206172021-11-27 Vitamin A Transporters in Visual Function: A Mini Review on Membrane Receptors for Dietary Vitamin A Uptake, Storage, and Transport to the Eye Martin Ask, Nicasio Leung, Matthias Radhakrishnan, Rakesh Lobo, Glenn P. Nutrients Review Vitamins are essential compounds obtained through diet that are necessary for normal development and function in an organism. One of the most important vitamins for human physiology is vitamin A, a group of retinoid compounds and carotenoids, which generally function as a mediator for cell growth, differentiation, immunity, and embryonic development, as well as serving as a key component in the phototransduction cycle in the vertebrate retina. For humans, vitamin A is obtained through the diet, where provitamin A carotenoids such as β-carotene from plants or preformed vitamin A such as retinyl esters from animal sources are absorbed into the body via the small intestine and converted into all-trans retinol within the intestinal enterocytes. Specifically, once absorbed, carotenoids are cleaved by carotenoid cleavage oxygenases (CCOs), such as Beta-carotene 15,15’-monooxygenase (BCO1), to produce all-trans retinal that subsequently gets converted into all-trans retinol. CRBP2 bound retinol is then converted into retinyl esters (REs) by the enzyme lecithin retinol acyltransferase (LRAT) in the endoplasmic reticulum, which is then packaged into chylomicrons and sent into the bloodstream for storage in hepatic stellate cells in the liver or for functional use in peripheral tissues such as the retina. All-trans retinol also travels through the bloodstream bound to retinol binding protein 4 (RBP4), where it enters cells with the assistance of the transmembrane transporters, stimulated by retinoic acid 6 (STRA6) in peripheral tissues or retinol binding protein 4 receptor 2 (RBPR2) in systemic tissues (e.g., in the retina and the liver, respectively). Much is known about the intake, metabolism, storage, and function of vitamin A compounds, especially with regard to its impact on eye development and visual function in the retinoid cycle. However, there is much to learn about the role of vitamin A as a transcription factor in development and cell growth, as well as how peripheral cells signal hepatocytes to secrete all-trans retinol into the blood for peripheral cell use. This article aims to review literature regarding the major known pathways of vitamin A intake from dietary sources into hepatocytes, vitamin A excretion by hepatocytes, as well as vitamin A usage within the retinoid cycle in the RPE and retina to provide insight on future directions of novel membrane transporters for vitamin A in retinal cell physiology and visual function. MDPI 2021-11-09 /pmc/articles/PMC8620617/ /pubmed/34836244 http://dx.doi.org/10.3390/nu13113987 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Martin Ask, Nicasio Leung, Matthias Radhakrishnan, Rakesh Lobo, Glenn P. Vitamin A Transporters in Visual Function: A Mini Review on Membrane Receptors for Dietary Vitamin A Uptake, Storage, and Transport to the Eye |
title | Vitamin A Transporters in Visual Function: A Mini Review on Membrane Receptors for Dietary Vitamin A Uptake, Storage, and Transport to the Eye |
title_full | Vitamin A Transporters in Visual Function: A Mini Review on Membrane Receptors for Dietary Vitamin A Uptake, Storage, and Transport to the Eye |
title_fullStr | Vitamin A Transporters in Visual Function: A Mini Review on Membrane Receptors for Dietary Vitamin A Uptake, Storage, and Transport to the Eye |
title_full_unstemmed | Vitamin A Transporters in Visual Function: A Mini Review on Membrane Receptors for Dietary Vitamin A Uptake, Storage, and Transport to the Eye |
title_short | Vitamin A Transporters in Visual Function: A Mini Review on Membrane Receptors for Dietary Vitamin A Uptake, Storage, and Transport to the Eye |
title_sort | vitamin a transporters in visual function: a mini review on membrane receptors for dietary vitamin a uptake, storage, and transport to the eye |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620617/ https://www.ncbi.nlm.nih.gov/pubmed/34836244 http://dx.doi.org/10.3390/nu13113987 |
work_keys_str_mv | AT martinasknicasio vitaminatransportersinvisualfunctionaminireviewonmembranereceptorsfordietaryvitaminauptakestorageandtransporttotheeye AT leungmatthias vitaminatransportersinvisualfunctionaminireviewonmembranereceptorsfordietaryvitaminauptakestorageandtransporttotheeye AT radhakrishnanrakesh vitaminatransportersinvisualfunctionaminireviewonmembranereceptorsfordietaryvitaminauptakestorageandtransporttotheeye AT loboglennp vitaminatransportersinvisualfunctionaminireviewonmembranereceptorsfordietaryvitaminauptakestorageandtransporttotheeye |