Cargando…
Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons
People walk on different types of terrain daily; for instance, level-ground walking, ramp and stair ascent and descent, and stepping over obstacles are common activities in daily life. Movement patterns change as people move from one terrain to another. The prediction of transitions between locomoti...
Autores principales: | Su, Binbin, Liu, Yi-Xing, Gutierrez-Farewik, Elena M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620781/ https://www.ncbi.nlm.nih.gov/pubmed/34833549 http://dx.doi.org/10.3390/s21227473 |
Ejemplares similares
-
Multilayer perceptrons
por: Vang-Mata, Ruth
Publicado: (2020) -
Gait Trajectory and Gait Phase Prediction Based on an LSTM Network
por: Su, Binbin, et al.
Publicado: (2020) -
Evaluation of gait characteristics in subjects with locomotive syndrome using wearable gait sensors
por: Saito, Yuki, et al.
Publicado: (2022) -
Human Activity Classification Using Multilayer Perceptron
por: Majidzadeh Gorjani, Ojan, et al.
Publicado: (2021) -
Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units
por: Su, Binbin, et al.
Publicado: (2020)