Cargando…
Sea Bass Primary Cultures versus RTgill-W1 Cell Line: Influence of Cell Model on the Sensitivity to Nanoparticles
Determination of acute toxicity to vertebrates in aquatic environments is mainly performed following OECD test guideline 203, requiring the use of a large number of fish and with mortality as endpoint. This test is also used to determine toxicity of nanomaterials in aquatic environments. Since a rep...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620814/ https://www.ncbi.nlm.nih.gov/pubmed/34835900 http://dx.doi.org/10.3390/nano11113136 |
_version_ | 1784605309773283328 |
---|---|
author | Jimeno-Romero, Alba Gwinner, Frederik Müller, Michelle Mariussen, Espen Soto, Manu Kohl, Yvonne |
author_facet | Jimeno-Romero, Alba Gwinner, Frederik Müller, Michelle Mariussen, Espen Soto, Manu Kohl, Yvonne |
author_sort | Jimeno-Romero, Alba |
collection | PubMed |
description | Determination of acute toxicity to vertebrates in aquatic environments is mainly performed following OECD test guideline 203, requiring the use of a large number of fish and with mortality as endpoint. This test is also used to determine toxicity of nanomaterials in aquatic environments. Since a replacement method for animal testing in nanotoxicity studies is desirable, the feasibility of fish primary cultures or cell lines as a model for nanotoxicity screenings is investigated here. Dicentrarchus labrax primary cultures and RTgill-W1 cell line were exposed to several concentrations (0.1 to 200 ug/mL) of different nanoparticles (TiO(2), polystyrene and silver), and cytotoxicity, metabolic activity and reactive oxygen species formation were investigated after 24 and 48 h of exposure. Protein corona as amount of protein bound, as well as the influence of surface modification (-COOH, -NH(2)), exposure media (Leibovitz’s L15 or seawater), weathering and cell type were the experimental variables included to test their influence on the results of the assays. Data from all scenarios was split based on the significance each experimental variable had in the result of the cytotoxicity tests, in an exploratory approach that allows for better understanding of the determining factors affecting toxicity. Data shows that more variables significantly influenced the outcome of toxicity tests when the primary cultures were exposed to the different nanoparticles. Toxicity tests performed in RTgill-W1 were influenced only by exposure time and nanoparticle concentration. The whole data set was integrated in a biological response index to show the overall impact of nanoparticle exposures. |
format | Online Article Text |
id | pubmed-8620814 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86208142021-11-27 Sea Bass Primary Cultures versus RTgill-W1 Cell Line: Influence of Cell Model on the Sensitivity to Nanoparticles Jimeno-Romero, Alba Gwinner, Frederik Müller, Michelle Mariussen, Espen Soto, Manu Kohl, Yvonne Nanomaterials (Basel) Article Determination of acute toxicity to vertebrates in aquatic environments is mainly performed following OECD test guideline 203, requiring the use of a large number of fish and with mortality as endpoint. This test is also used to determine toxicity of nanomaterials in aquatic environments. Since a replacement method for animal testing in nanotoxicity studies is desirable, the feasibility of fish primary cultures or cell lines as a model for nanotoxicity screenings is investigated here. Dicentrarchus labrax primary cultures and RTgill-W1 cell line were exposed to several concentrations (0.1 to 200 ug/mL) of different nanoparticles (TiO(2), polystyrene and silver), and cytotoxicity, metabolic activity and reactive oxygen species formation were investigated after 24 and 48 h of exposure. Protein corona as amount of protein bound, as well as the influence of surface modification (-COOH, -NH(2)), exposure media (Leibovitz’s L15 or seawater), weathering and cell type were the experimental variables included to test their influence on the results of the assays. Data from all scenarios was split based on the significance each experimental variable had in the result of the cytotoxicity tests, in an exploratory approach that allows for better understanding of the determining factors affecting toxicity. Data shows that more variables significantly influenced the outcome of toxicity tests when the primary cultures were exposed to the different nanoparticles. Toxicity tests performed in RTgill-W1 were influenced only by exposure time and nanoparticle concentration. The whole data set was integrated in a biological response index to show the overall impact of nanoparticle exposures. MDPI 2021-11-20 /pmc/articles/PMC8620814/ /pubmed/34835900 http://dx.doi.org/10.3390/nano11113136 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jimeno-Romero, Alba Gwinner, Frederik Müller, Michelle Mariussen, Espen Soto, Manu Kohl, Yvonne Sea Bass Primary Cultures versus RTgill-W1 Cell Line: Influence of Cell Model on the Sensitivity to Nanoparticles |
title | Sea Bass Primary Cultures versus RTgill-W1 Cell Line: Influence of Cell Model on the Sensitivity to Nanoparticles |
title_full | Sea Bass Primary Cultures versus RTgill-W1 Cell Line: Influence of Cell Model on the Sensitivity to Nanoparticles |
title_fullStr | Sea Bass Primary Cultures versus RTgill-W1 Cell Line: Influence of Cell Model on the Sensitivity to Nanoparticles |
title_full_unstemmed | Sea Bass Primary Cultures versus RTgill-W1 Cell Line: Influence of Cell Model on the Sensitivity to Nanoparticles |
title_short | Sea Bass Primary Cultures versus RTgill-W1 Cell Line: Influence of Cell Model on the Sensitivity to Nanoparticles |
title_sort | sea bass primary cultures versus rtgill-w1 cell line: influence of cell model on the sensitivity to nanoparticles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620814/ https://www.ncbi.nlm.nih.gov/pubmed/34835900 http://dx.doi.org/10.3390/nano11113136 |
work_keys_str_mv | AT jimenoromeroalba seabassprimaryculturesversusrtgillw1celllineinfluenceofcellmodelonthesensitivitytonanoparticles AT gwinnerfrederik seabassprimaryculturesversusrtgillw1celllineinfluenceofcellmodelonthesensitivitytonanoparticles AT mullermichelle seabassprimaryculturesversusrtgillw1celllineinfluenceofcellmodelonthesensitivitytonanoparticles AT mariussenespen seabassprimaryculturesversusrtgillw1celllineinfluenceofcellmodelonthesensitivitytonanoparticles AT sotomanu seabassprimaryculturesversusrtgillw1celllineinfluenceofcellmodelonthesensitivitytonanoparticles AT kohlyvonne seabassprimaryculturesversusrtgillw1celllineinfluenceofcellmodelonthesensitivitytonanoparticles |