Cargando…

Controlled Epitaxial Growth and Atomically Sharp Interface of Graphene/Ferromagnetic Heterostructure via Ambient Pressure Chemical Vapor Deposition

The strong spin filtering effect can be produced by C-Ni atomic orbital hybridization in lattice-matched graphene/Ni (111) heterostructures, which provides an ideal platform to improve the tunnel magnetoresistance (TMR) of magnetic tunnel junctions (MTJs). However, large-area, high-quality graphene/...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Ruinan, Hu, Yueguo, Li, Peisen, Peng, Junping, Hu, Jiafei, Yang, Ming, Chen, Dixiang, Guo, Yanrui, Zhang, Qi, Xie, Xiangnan, Dai, Jiayu, Qiu, Weicheng, Wang, Guang, Pan, Mengchun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620976/
https://www.ncbi.nlm.nih.gov/pubmed/34835878
http://dx.doi.org/10.3390/nano11113112
_version_ 1784605346395848704
author Wu, Ruinan
Hu, Yueguo
Li, Peisen
Peng, Junping
Hu, Jiafei
Yang, Ming
Chen, Dixiang
Guo, Yanrui
Zhang, Qi
Xie, Xiangnan
Dai, Jiayu
Qiu, Weicheng
Wang, Guang
Pan, Mengchun
author_facet Wu, Ruinan
Hu, Yueguo
Li, Peisen
Peng, Junping
Hu, Jiafei
Yang, Ming
Chen, Dixiang
Guo, Yanrui
Zhang, Qi
Xie, Xiangnan
Dai, Jiayu
Qiu, Weicheng
Wang, Guang
Pan, Mengchun
author_sort Wu, Ruinan
collection PubMed
description The strong spin filtering effect can be produced by C-Ni atomic orbital hybridization in lattice-matched graphene/Ni (111) heterostructures, which provides an ideal platform to improve the tunnel magnetoresistance (TMR) of magnetic tunnel junctions (MTJs). However, large-area, high-quality graphene/ferromagnetic epitaxial interfaces are mainly limited by the single-crystal size of the Ni (111) substrate and well-oriented graphene domains. In this work, based on the preparation of a 2-inch single-crystal Ni (111) film on an Al(2)O(3) (0001) wafer, we successfully achieve the production of a full-coverage, high-quality graphene monolayer on a Ni (111) substrate with an atomically sharp interface via ambient pressure chemical vapor deposition (APCVD). The high crystallinity and strong coupling of the well-oriented epitaxial graphene/Ni (111) interface are systematically investigated and carefully demonstrated. Through the analysis of the growth model, it is shown that the oriented growth induced by the Ni (111) crystal, the optimized graphene nucleation and the subsurface carbon density jointly contribute to the resulting high-quality graphene/Ni (111) heterostructure. Our work provides a convenient approach for the controllable fabrication of a large-area homogeneous graphene/ferromagnetic interface, which would benefit interface engineering of graphene-based MTJs and future chip-level 2D spintronic applications.
format Online
Article
Text
id pubmed-8620976
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86209762021-11-27 Controlled Epitaxial Growth and Atomically Sharp Interface of Graphene/Ferromagnetic Heterostructure via Ambient Pressure Chemical Vapor Deposition Wu, Ruinan Hu, Yueguo Li, Peisen Peng, Junping Hu, Jiafei Yang, Ming Chen, Dixiang Guo, Yanrui Zhang, Qi Xie, Xiangnan Dai, Jiayu Qiu, Weicheng Wang, Guang Pan, Mengchun Nanomaterials (Basel) Communication The strong spin filtering effect can be produced by C-Ni atomic orbital hybridization in lattice-matched graphene/Ni (111) heterostructures, which provides an ideal platform to improve the tunnel magnetoresistance (TMR) of magnetic tunnel junctions (MTJs). However, large-area, high-quality graphene/ferromagnetic epitaxial interfaces are mainly limited by the single-crystal size of the Ni (111) substrate and well-oriented graphene domains. In this work, based on the preparation of a 2-inch single-crystal Ni (111) film on an Al(2)O(3) (0001) wafer, we successfully achieve the production of a full-coverage, high-quality graphene monolayer on a Ni (111) substrate with an atomically sharp interface via ambient pressure chemical vapor deposition (APCVD). The high crystallinity and strong coupling of the well-oriented epitaxial graphene/Ni (111) interface are systematically investigated and carefully demonstrated. Through the analysis of the growth model, it is shown that the oriented growth induced by the Ni (111) crystal, the optimized graphene nucleation and the subsurface carbon density jointly contribute to the resulting high-quality graphene/Ni (111) heterostructure. Our work provides a convenient approach for the controllable fabrication of a large-area homogeneous graphene/ferromagnetic interface, which would benefit interface engineering of graphene-based MTJs and future chip-level 2D spintronic applications. MDPI 2021-11-18 /pmc/articles/PMC8620976/ /pubmed/34835878 http://dx.doi.org/10.3390/nano11113112 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Communication
Wu, Ruinan
Hu, Yueguo
Li, Peisen
Peng, Junping
Hu, Jiafei
Yang, Ming
Chen, Dixiang
Guo, Yanrui
Zhang, Qi
Xie, Xiangnan
Dai, Jiayu
Qiu, Weicheng
Wang, Guang
Pan, Mengchun
Controlled Epitaxial Growth and Atomically Sharp Interface of Graphene/Ferromagnetic Heterostructure via Ambient Pressure Chemical Vapor Deposition
title Controlled Epitaxial Growth and Atomically Sharp Interface of Graphene/Ferromagnetic Heterostructure via Ambient Pressure Chemical Vapor Deposition
title_full Controlled Epitaxial Growth and Atomically Sharp Interface of Graphene/Ferromagnetic Heterostructure via Ambient Pressure Chemical Vapor Deposition
title_fullStr Controlled Epitaxial Growth and Atomically Sharp Interface of Graphene/Ferromagnetic Heterostructure via Ambient Pressure Chemical Vapor Deposition
title_full_unstemmed Controlled Epitaxial Growth and Atomically Sharp Interface of Graphene/Ferromagnetic Heterostructure via Ambient Pressure Chemical Vapor Deposition
title_short Controlled Epitaxial Growth and Atomically Sharp Interface of Graphene/Ferromagnetic Heterostructure via Ambient Pressure Chemical Vapor Deposition
title_sort controlled epitaxial growth and atomically sharp interface of graphene/ferromagnetic heterostructure via ambient pressure chemical vapor deposition
topic Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620976/
https://www.ncbi.nlm.nih.gov/pubmed/34835878
http://dx.doi.org/10.3390/nano11113112
work_keys_str_mv AT wuruinan controlledepitaxialgrowthandatomicallysharpinterfaceofgrapheneferromagneticheterostructureviaambientpressurechemicalvapordeposition
AT huyueguo controlledepitaxialgrowthandatomicallysharpinterfaceofgrapheneferromagneticheterostructureviaambientpressurechemicalvapordeposition
AT lipeisen controlledepitaxialgrowthandatomicallysharpinterfaceofgrapheneferromagneticheterostructureviaambientpressurechemicalvapordeposition
AT pengjunping controlledepitaxialgrowthandatomicallysharpinterfaceofgrapheneferromagneticheterostructureviaambientpressurechemicalvapordeposition
AT hujiafei controlledepitaxialgrowthandatomicallysharpinterfaceofgrapheneferromagneticheterostructureviaambientpressurechemicalvapordeposition
AT yangming controlledepitaxialgrowthandatomicallysharpinterfaceofgrapheneferromagneticheterostructureviaambientpressurechemicalvapordeposition
AT chendixiang controlledepitaxialgrowthandatomicallysharpinterfaceofgrapheneferromagneticheterostructureviaambientpressurechemicalvapordeposition
AT guoyanrui controlledepitaxialgrowthandatomicallysharpinterfaceofgrapheneferromagneticheterostructureviaambientpressurechemicalvapordeposition
AT zhangqi controlledepitaxialgrowthandatomicallysharpinterfaceofgrapheneferromagneticheterostructureviaambientpressurechemicalvapordeposition
AT xiexiangnan controlledepitaxialgrowthandatomicallysharpinterfaceofgrapheneferromagneticheterostructureviaambientpressurechemicalvapordeposition
AT daijiayu controlledepitaxialgrowthandatomicallysharpinterfaceofgrapheneferromagneticheterostructureviaambientpressurechemicalvapordeposition
AT qiuweicheng controlledepitaxialgrowthandatomicallysharpinterfaceofgrapheneferromagneticheterostructureviaambientpressurechemicalvapordeposition
AT wangguang controlledepitaxialgrowthandatomicallysharpinterfaceofgrapheneferromagneticheterostructureviaambientpressurechemicalvapordeposition
AT panmengchun controlledepitaxialgrowthandatomicallysharpinterfaceofgrapheneferromagneticheterostructureviaambientpressurechemicalvapordeposition