Cargando…
Machine Learning-Based Prediction of Drug-Drug Interactions for Histamine Antagonist Using Hybrid Chemical Features
The requesting of detailed information on new drugs including drug-drug interactions or targets is often unavailable and resource-intensive in assessing adverse drug events. To shorten the common evaluation process of drug-drug interactions, we present a machine learning framework-HAINI to predict D...
Autores principales: | Dang, Luong Huu, Dung, Nguyen Tan, Quang, Ly Xuan, Hung, Le Quang, Le, Ngoc Hoang, Le, Nhi Thao Ngoc, Diem, Nguyen Thi, Nga, Nguyen Thi Thuy, Hung, Shih-Han, Le, Nguyen Quoc Khanh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621088/ https://www.ncbi.nlm.nih.gov/pubmed/34831315 http://dx.doi.org/10.3390/cells10113092 |
Ejemplares similares
-
Development and Validation of an Explainable Machine Learning-Based Prediction Model for Drug–Food Interactions from Chemical Structures
por: Kha, Quang-Hien, et al.
Publicado: (2023) -
Machine Learning Model for Identifying Antioxidant Proteins Using Features Calculated from Primary Sequences
por: Ho Thanh Lam, Luu, et al.
Publicado: (2020) -
On the road to explainable AI in drug-drug interactions prediction: A systematic review
por: Vo, Thanh Hoa, et al.
Publicado: (2022) -
A Facile Synthesis Process and Evaluations of α-Calcium Sulfate Hemihydrate for Bone Substitute
por: Le, Nhi Thao Ngoc, et al.
Publicado: (2020) -
Microscopic Observation Drug Susceptibility Assay (MODS) for Early Diagnosis of Tuberculosis in Children
por: Ha, Dang Thi Minh, et al.
Publicado: (2009)