Cargando…
Evaluation of Keypoint Descriptors for Flight Simulator Cockpit Elements: WrightBroS Database
The goal of the WrightBroS project is to design a system supporting the training of pilots in a flight simulator. The desired software should work on smart glasses supplementing the visual information with augmented reality data, displaying, for instance, additional training information or descripti...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621130/ https://www.ncbi.nlm.nih.gov/pubmed/34833763 http://dx.doi.org/10.3390/s21227687 |
_version_ | 1784605383457767424 |
---|---|
author | Nurzynska, Karolina Skurowski, Przemysław Pawlyta, Magdalena Cyran, Krzysztof |
author_facet | Nurzynska, Karolina Skurowski, Przemysław Pawlyta, Magdalena Cyran, Krzysztof |
author_sort | Nurzynska, Karolina |
collection | PubMed |
description | The goal of the WrightBroS project is to design a system supporting the training of pilots in a flight simulator. The desired software should work on smart glasses supplementing the visual information with augmented reality data, displaying, for instance, additional training information or descriptions of visible devices in real time. Therefore, the rapid recognition of observed objects and their exact positioning is crucial for successful deployment. The keypoint descriptor approach is a natural framework that is used for this purpose. For this to be applied, the thorough examination of specific keypoint location methods and types of keypoint descriptors is required first, as these are essential factors that affect the overall accuracy of the approach. In the presented research, we prepared a dedicated database presenting 27 various devices of flight simulator. Then, we used it to compare existing state-of-the-art techniques and verify their applicability. We investigated the time necessary for the computation of a keypoint position, the time needed for the preparation of a descriptor, and the classification accuracy of the considered approaches. In total, we compared the outcomes of 12 keypoint location methods and 10 keypoint descriptors. The best scores recorded for our database were almost 96% for a combination of the ORB method for keypoint localization followed by the BRISK approach as a descriptor. |
format | Online Article Text |
id | pubmed-8621130 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86211302021-11-27 Evaluation of Keypoint Descriptors for Flight Simulator Cockpit Elements: WrightBroS Database Nurzynska, Karolina Skurowski, Przemysław Pawlyta, Magdalena Cyran, Krzysztof Sensors (Basel) Article The goal of the WrightBroS project is to design a system supporting the training of pilots in a flight simulator. The desired software should work on smart glasses supplementing the visual information with augmented reality data, displaying, for instance, additional training information or descriptions of visible devices in real time. Therefore, the rapid recognition of observed objects and their exact positioning is crucial for successful deployment. The keypoint descriptor approach is a natural framework that is used for this purpose. For this to be applied, the thorough examination of specific keypoint location methods and types of keypoint descriptors is required first, as these are essential factors that affect the overall accuracy of the approach. In the presented research, we prepared a dedicated database presenting 27 various devices of flight simulator. Then, we used it to compare existing state-of-the-art techniques and verify their applicability. We investigated the time necessary for the computation of a keypoint position, the time needed for the preparation of a descriptor, and the classification accuracy of the considered approaches. In total, we compared the outcomes of 12 keypoint location methods and 10 keypoint descriptors. The best scores recorded for our database were almost 96% for a combination of the ORB method for keypoint localization followed by the BRISK approach as a descriptor. MDPI 2021-11-19 /pmc/articles/PMC8621130/ /pubmed/34833763 http://dx.doi.org/10.3390/s21227687 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nurzynska, Karolina Skurowski, Przemysław Pawlyta, Magdalena Cyran, Krzysztof Evaluation of Keypoint Descriptors for Flight Simulator Cockpit Elements: WrightBroS Database |
title | Evaluation of Keypoint Descriptors for Flight Simulator Cockpit Elements: WrightBroS Database |
title_full | Evaluation of Keypoint Descriptors for Flight Simulator Cockpit Elements: WrightBroS Database |
title_fullStr | Evaluation of Keypoint Descriptors for Flight Simulator Cockpit Elements: WrightBroS Database |
title_full_unstemmed | Evaluation of Keypoint Descriptors for Flight Simulator Cockpit Elements: WrightBroS Database |
title_short | Evaluation of Keypoint Descriptors for Flight Simulator Cockpit Elements: WrightBroS Database |
title_sort | evaluation of keypoint descriptors for flight simulator cockpit elements: wrightbros database |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621130/ https://www.ncbi.nlm.nih.gov/pubmed/34833763 http://dx.doi.org/10.3390/s21227687 |
work_keys_str_mv | AT nurzynskakarolina evaluationofkeypointdescriptorsforflightsimulatorcockpitelementswrightbrosdatabase AT skurowskiprzemysław evaluationofkeypointdescriptorsforflightsimulatorcockpitelementswrightbrosdatabase AT pawlytamagdalena evaluationofkeypointdescriptorsforflightsimulatorcockpitelementswrightbrosdatabase AT cyrankrzysztof evaluationofkeypointdescriptorsforflightsimulatorcockpitelementswrightbrosdatabase |