Cargando…

Parker’s Solar Wind Model for a Polytropic Gas

Parker’s hydrodynamic isothermal solar wind model is extended to apply for a more realistic polytropic gas flow that can be caused by a variable extended heating of the corona. A compatible theoretical formulation is given and detailed numerical and systematic asymptotic theoretical considerations a...

Descripción completa

Detalles Bibliográficos
Autores principales: Shivamoggi, Bhimsen, Rollins, David, Pohl, Leos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621273/
https://www.ncbi.nlm.nih.gov/pubmed/34828195
http://dx.doi.org/10.3390/e23111497
_version_ 1784605417969549312
author Shivamoggi, Bhimsen
Rollins, David
Pohl, Leos
author_facet Shivamoggi, Bhimsen
Rollins, David
Pohl, Leos
author_sort Shivamoggi, Bhimsen
collection PubMed
description Parker’s hydrodynamic isothermal solar wind model is extended to apply for a more realistic polytropic gas flow that can be caused by a variable extended heating of the corona. A compatible theoretical formulation is given and detailed numerical and systematic asymptotic theoretical considerations are presented. The polytropic conditions favor an enhanced conversion of thermal energy in the solar wind into kinetic energy of the outward flow and are hence shown to enhance the acceleration of the solar wind, thus indicating a quicker loss of the solar angular momentum.
format Online
Article
Text
id pubmed-8621273
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86212732021-11-27 Parker’s Solar Wind Model for a Polytropic Gas Shivamoggi, Bhimsen Rollins, David Pohl, Leos Entropy (Basel) Article Parker’s hydrodynamic isothermal solar wind model is extended to apply for a more realistic polytropic gas flow that can be caused by a variable extended heating of the corona. A compatible theoretical formulation is given and detailed numerical and systematic asymptotic theoretical considerations are presented. The polytropic conditions favor an enhanced conversion of thermal energy in the solar wind into kinetic energy of the outward flow and are hence shown to enhance the acceleration of the solar wind, thus indicating a quicker loss of the solar angular momentum. MDPI 2021-11-12 /pmc/articles/PMC8621273/ /pubmed/34828195 http://dx.doi.org/10.3390/e23111497 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Shivamoggi, Bhimsen
Rollins, David
Pohl, Leos
Parker’s Solar Wind Model for a Polytropic Gas
title Parker’s Solar Wind Model for a Polytropic Gas
title_full Parker’s Solar Wind Model for a Polytropic Gas
title_fullStr Parker’s Solar Wind Model for a Polytropic Gas
title_full_unstemmed Parker’s Solar Wind Model for a Polytropic Gas
title_short Parker’s Solar Wind Model for a Polytropic Gas
title_sort parker’s solar wind model for a polytropic gas
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621273/
https://www.ncbi.nlm.nih.gov/pubmed/34828195
http://dx.doi.org/10.3390/e23111497
work_keys_str_mv AT shivamoggibhimsen parkerssolarwindmodelforapolytropicgas
AT rollinsdavid parkerssolarwindmodelforapolytropicgas
AT pohlleos parkerssolarwindmodelforapolytropicgas