Cargando…
Towards Automated Analysis of Grain Spikes in Greenhouse Images Using Neural Network Approaches: A Comparative Investigation of Six Methods
Automated analysis of small and optically variable plant organs, such as grain spikes, is highly demanded in quantitative plant science and breeding. Previous works primarily focused on the detection of prominently visible spikes emerging on the top of the grain plants growing in field conditions. H...
Autores principales: | Ullah, Sajid, Henke, Michael, Narisetti, Narendra, Panzarová, Klára, Trtílek, Martin, Hejatko, Jan, Gladilin, Evgeny |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621358/ https://www.ncbi.nlm.nih.gov/pubmed/34833515 http://dx.doi.org/10.3390/s21227441 |
Ejemplares similares
-
Automated Spike Detection in Diverse European Wheat Plants Using Textural Features and the Frangi Filter in 2D Greenhouse Images
por: Narisetti, Narendra, et al.
Publicado: (2020) -
Deep Learning Based Greenhouse Image Segmentation and Shoot Phenotyping (DeepShoot)
por: Narisetti, Narendra, et al.
Publicado: (2022) -
Semi-automated Root Image Analysis (saRIA)
por: Narisetti, Narendra, et al.
Publicado: (2019) -
Fully-automated root image analysis (faRIA)
por: Narisetti, Narendra, et al.
Publicado: (2021) -
iReenCAM: automated imaging system for kinetic analysis of photosynthetic pigment biosynthesis at high spatiotemporal resolution during early deetiolation
por: Balakhonova, Veronika, et al.
Publicado: (2023)