Cargando…
A Study on Railway Surface Defects Detection Based on Machine Vision
The detection of rail surface defects is an important tool to ensure the safe operation of rail transit. Due to the complex diversity of track surface defect features and the small size of the defect area, it is difficult to obtain satisfying detection results by traditional machine vision methods....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621472/ https://www.ncbi.nlm.nih.gov/pubmed/34828135 http://dx.doi.org/10.3390/e23111437 |
_version_ | 1784605466339311616 |
---|---|
author | Bai, Tangbo Gao, Jialin Yang, Jianwei Yao, Dechen |
author_facet | Bai, Tangbo Gao, Jialin Yang, Jianwei Yao, Dechen |
author_sort | Bai, Tangbo |
collection | PubMed |
description | The detection of rail surface defects is an important tool to ensure the safe operation of rail transit. Due to the complex diversity of track surface defect features and the small size of the defect area, it is difficult to obtain satisfying detection results by traditional machine vision methods. The existing deep learning-based methods have the problems of large model sizes, excessive parameters, low accuracy and slow speed. Therefore, this paper proposes a new method based on an improved YOLOv4 (You Only Look Once, YOLO) for railway surface defect detection. In this method, MobileNetv3 is used as the backbone network of YOLOv4 to extract image features, and at the same time, deep separable convolution is applied on the PANet layer in YOLOv4, which realizes the lightweight network and real-time detection of the railway surface. The test results show that, compared with YOLOv4, the study can reduce the amount of the parameters by 78.04%, speed up the detection by 10.36 frames per second and decrease the model volume by 78%. Compared with other methods, the proposed method can achieve a higher detection accuracy, making it suitable for the fast and accurate detection of railway surface defects. |
format | Online Article Text |
id | pubmed-8621472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86214722021-11-27 A Study on Railway Surface Defects Detection Based on Machine Vision Bai, Tangbo Gao, Jialin Yang, Jianwei Yao, Dechen Entropy (Basel) Article The detection of rail surface defects is an important tool to ensure the safe operation of rail transit. Due to the complex diversity of track surface defect features and the small size of the defect area, it is difficult to obtain satisfying detection results by traditional machine vision methods. The existing deep learning-based methods have the problems of large model sizes, excessive parameters, low accuracy and slow speed. Therefore, this paper proposes a new method based on an improved YOLOv4 (You Only Look Once, YOLO) for railway surface defect detection. In this method, MobileNetv3 is used as the backbone network of YOLOv4 to extract image features, and at the same time, deep separable convolution is applied on the PANet layer in YOLOv4, which realizes the lightweight network and real-time detection of the railway surface. The test results show that, compared with YOLOv4, the study can reduce the amount of the parameters by 78.04%, speed up the detection by 10.36 frames per second and decrease the model volume by 78%. Compared with other methods, the proposed method can achieve a higher detection accuracy, making it suitable for the fast and accurate detection of railway surface defects. MDPI 2021-10-30 /pmc/articles/PMC8621472/ /pubmed/34828135 http://dx.doi.org/10.3390/e23111437 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bai, Tangbo Gao, Jialin Yang, Jianwei Yao, Dechen A Study on Railway Surface Defects Detection Based on Machine Vision |
title | A Study on Railway Surface Defects Detection Based on Machine Vision |
title_full | A Study on Railway Surface Defects Detection Based on Machine Vision |
title_fullStr | A Study on Railway Surface Defects Detection Based on Machine Vision |
title_full_unstemmed | A Study on Railway Surface Defects Detection Based on Machine Vision |
title_short | A Study on Railway Surface Defects Detection Based on Machine Vision |
title_sort | study on railway surface defects detection based on machine vision |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621472/ https://www.ncbi.nlm.nih.gov/pubmed/34828135 http://dx.doi.org/10.3390/e23111437 |
work_keys_str_mv | AT baitangbo astudyonrailwaysurfacedefectsdetectionbasedonmachinevision AT gaojialin astudyonrailwaysurfacedefectsdetectionbasedonmachinevision AT yangjianwei astudyonrailwaysurfacedefectsdetectionbasedonmachinevision AT yaodechen astudyonrailwaysurfacedefectsdetectionbasedonmachinevision AT baitangbo studyonrailwaysurfacedefectsdetectionbasedonmachinevision AT gaojialin studyonrailwaysurfacedefectsdetectionbasedonmachinevision AT yangjianwei studyonrailwaysurfacedefectsdetectionbasedonmachinevision AT yaodechen studyonrailwaysurfacedefectsdetectionbasedonmachinevision |