Cargando…
Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN)
Deep learning has gained immense attention from researchers in medicine, especially in medical imaging. The main bottleneck is the unavailability of sufficiently large medical datasets required for the good performance of deep learning models. This paper proposes a new framework consisting of one va...
Autores principales: | Ahmad, Bilal, Jun, Sun, Palade, Vasile, You, Qi, Mao, Li, Zhongjie, Mao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621489/ https://www.ncbi.nlm.nih.gov/pubmed/34829494 http://dx.doi.org/10.3390/diagnostics11112147 |
Ejemplares similares
-
Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks
por: Ahmad, Bilal, et al.
Publicado: (2022) -
Application of Generative Adversarial Networks (GANs) to jet images
por: Paganini, Michela
Publicado: (2017) -
Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey
por: You, Aram, et al.
Publicado: (2022) -
Seminar: Open challenges for improving Generative Adversarial Networks (GANs)
por: Goodfellow, Ian
Publicado: (2017) -
MB-GAN: Microbiome Simulation via Generative Adversarial Network
por: Rong, Ruichen, et al.
Publicado: (2021)