Cargando…
Diagnosing Malaria Patients with Plasmodium falciparum and vivax Using Deep Learning for Thick Smear Images
We propose a new framework, PlasmodiumVF-Net, to analyze thick smear microscopy images for a malaria diagnosis on both image and patient-level. Our framework detects whether a patient is infected, and in case of a malarial infection, reports whether the patient is infected by Plasmodium falciparum o...
Autores principales: | Kassim, Yasmin M., Yang, Feng, Yu, Hang, Maude, Richard J., Jaeger, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621537/ https://www.ncbi.nlm.nih.gov/pubmed/34829341 http://dx.doi.org/10.3390/diagnostics11111994 |
Ejemplares similares
-
Deep Learning-Based Cell Detection and Extraction in Thin Blood Smears for Malaria Diagnosis
por: Ufuktepe, Deniz Kavzak, et al.
Publicado: (2021) -
Circumsporozoite proteins of human malaria parasites Plasmodium falciparum and Plasmodium vivax
Publicado: (1982) -
Haematological response in experimental human Plasmodium falciparum and Plasmodium vivax malaria
por: Woolley, Stephen D., et al.
Publicado: (2021) -
Rapid diagnostic tests for diagnosing uncomplicated non‐falciparum or Plasmodium vivax malaria in endemic countries
por: Abba, Katharine, et al.
Publicado: (2014) -
Modelling the Incidence of Plasmodium vivax and Plasmodium falciparum Malaria in Afghanistan 2006–2009
por: Alegana, Victor A., et al.
Publicado: (2014)