Cargando…
Kinetics of the Thermal Degradation of Poly(lactic acid) and Polyamide Bioblends
Poly(lactic acid) (PLA) and biosourced polyamide (PA) bioblends, with a variable PA weight content of 10–50%, were prepared by melt blending in order to overcome the high brittleness of PLA. During processing, the properties of the melt were stabilized and enhanced by the addition of a styrene-acryl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621555/ https://www.ncbi.nlm.nih.gov/pubmed/34833295 http://dx.doi.org/10.3390/polym13223996 |
_version_ | 1784605486767669248 |
---|---|
author | Carrasco, Félix Santana Pérez, Orlando Maspoch, Maria Lluïsa |
author_facet | Carrasco, Félix Santana Pérez, Orlando Maspoch, Maria Lluïsa |
author_sort | Carrasco, Félix |
collection | PubMed |
description | Poly(lactic acid) (PLA) and biosourced polyamide (PA) bioblends, with a variable PA weight content of 10–50%, were prepared by melt blending in order to overcome the high brittleness of PLA. During processing, the properties of the melt were stabilized and enhanced by the addition of a styrene-acrylic multi-functional-epoxide oligomeric reactive agent (SAmfE). The general analytical equation (GAE) was used to evaluate the kinetic parameters of the thermal degradation of PLA within bioblends. Various empirical and theoretical solid-state mechanisms were tested to find the best kinetic model. In order to study the effect of PA on the PLA matrix, only the first stage of the thermal degradation was taken into consideration in the kinetic analysis (α < 0.4). On the other hand, standardized conversion functions were evaluated. Given that it is not easy to visualize the best accordance between experimental and theoretical values of standardized conversion functions, an index, based on the integral mean error, was evaluated to quantitatively support our findings relative to the best reaction mechanism. It was demonstrated that the most probable mechanism for the thermal degradation of PLA is the random scission of macromolecular chains. Moreover, y(α) master plots, which are independent of activation energy values, were used to confirm that the selected reaction mechanism was the most adequate. Activation energy values were calculated as a function of PA content. Moreover, the onset thermal stability of PLA was also determined. |
format | Online Article Text |
id | pubmed-8621555 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86215552021-11-27 Kinetics of the Thermal Degradation of Poly(lactic acid) and Polyamide Bioblends Carrasco, Félix Santana Pérez, Orlando Maspoch, Maria Lluïsa Polymers (Basel) Article Poly(lactic acid) (PLA) and biosourced polyamide (PA) bioblends, with a variable PA weight content of 10–50%, were prepared by melt blending in order to overcome the high brittleness of PLA. During processing, the properties of the melt were stabilized and enhanced by the addition of a styrene-acrylic multi-functional-epoxide oligomeric reactive agent (SAmfE). The general analytical equation (GAE) was used to evaluate the kinetic parameters of the thermal degradation of PLA within bioblends. Various empirical and theoretical solid-state mechanisms were tested to find the best kinetic model. In order to study the effect of PA on the PLA matrix, only the first stage of the thermal degradation was taken into consideration in the kinetic analysis (α < 0.4). On the other hand, standardized conversion functions were evaluated. Given that it is not easy to visualize the best accordance between experimental and theoretical values of standardized conversion functions, an index, based on the integral mean error, was evaluated to quantitatively support our findings relative to the best reaction mechanism. It was demonstrated that the most probable mechanism for the thermal degradation of PLA is the random scission of macromolecular chains. Moreover, y(α) master plots, which are independent of activation energy values, were used to confirm that the selected reaction mechanism was the most adequate. Activation energy values were calculated as a function of PA content. Moreover, the onset thermal stability of PLA was also determined. MDPI 2021-11-19 /pmc/articles/PMC8621555/ /pubmed/34833295 http://dx.doi.org/10.3390/polym13223996 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Carrasco, Félix Santana Pérez, Orlando Maspoch, Maria Lluïsa Kinetics of the Thermal Degradation of Poly(lactic acid) and Polyamide Bioblends |
title | Kinetics of the Thermal Degradation of Poly(lactic acid) and Polyamide Bioblends |
title_full | Kinetics of the Thermal Degradation of Poly(lactic acid) and Polyamide Bioblends |
title_fullStr | Kinetics of the Thermal Degradation of Poly(lactic acid) and Polyamide Bioblends |
title_full_unstemmed | Kinetics of the Thermal Degradation of Poly(lactic acid) and Polyamide Bioblends |
title_short | Kinetics of the Thermal Degradation of Poly(lactic acid) and Polyamide Bioblends |
title_sort | kinetics of the thermal degradation of poly(lactic acid) and polyamide bioblends |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621555/ https://www.ncbi.nlm.nih.gov/pubmed/34833295 http://dx.doi.org/10.3390/polym13223996 |
work_keys_str_mv | AT carrascofelix kineticsofthethermaldegradationofpolylacticacidandpolyamidebioblends AT santanaperezorlando kineticsofthethermaldegradationofpolylacticacidandpolyamidebioblends AT maspochmarialluisa kineticsofthethermaldegradationofpolylacticacidandpolyamidebioblends |