Cargando…
Coordinate-Descent Adaptation over Hamiltonian Multi-Agent Networks
The incremental least-mean-square (ILMS) algorithm is a useful method to perform distributed adaptation and learning in Hamiltonian networks. To implement the ILMS algorithm, each node needs to receive the local estimate of the previous node on the cycle path to update its own local estimate. Howeve...
Autores principales: | Khalili, Azam, Vahidpour, Vahid, Rastegarnia, Amir, Farzamnia, Ali, Teo Tze Kin, Kenneth, Sanei, Saeid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621694/ https://www.ncbi.nlm.nih.gov/pubmed/34833807 http://dx.doi.org/10.3390/s21227732 |
Ejemplares similares
-
A distributed algorithm for demand-side management: Selling back to the grid
por: Latifi, Milad, et al.
Publicado: (2017) -
Optimization by Adaptive Stochastic Descent
por: Kerr, Cliff C., et al.
Publicado: (2018) -
Structured feature selection using coordinate descent optimization
por: Ghalwash, Mohamed F., et al.
Publicado: (2016) -
A Distributed Coordinate Descent Algorithm for Learning Factorization Machine
por: Zhao, Kankan, et al.
Publicado: (2020) -
Membership inference attack on differentially private block coordinate descent
por: Riaz, Shazia, et al.
Publicado: (2023)