Cargando…
An Intelligent Multimode Clustering Mechanism Using Driving Pattern Recognition in Cognitive Internet of Vehicles
Connected autonomous vehicles can leverage communication and artificial intelligence technologies to effectively overcome the perceived limitations of individuals and enhance driving safety and stability. However, due to the high dynamics of the vehicular network and frequent interruptions and hando...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621695/ https://www.ncbi.nlm.nih.gov/pubmed/34833664 http://dx.doi.org/10.3390/s21227588 |
_version_ | 1784605517224607744 |
---|---|
author | Chang, Huigang Ning, Nianwen |
author_facet | Chang, Huigang Ning, Nianwen |
author_sort | Chang, Huigang |
collection | PubMed |
description | Connected autonomous vehicles can leverage communication and artificial intelligence technologies to effectively overcome the perceived limitations of individuals and enhance driving safety and stability. However, due to the high dynamics of the vehicular network and frequent interruptions and handovers, it is still challenging to provide stable communication connections between vehicles, which is likely to cause disasters. To address this issue, in this paper, we propose an intelligent clustering mechanism based on driving patterns in heterogeneous Cognitive Internet of Vehicles (CIoVs). In the proposed approach, we analyze the driving mode containing multiple feature parameters to accurately capture the driving characteristics. To ensure the accuracy of pattern recognition, a genetic algorithm-based neural network pattern recognition algorithm is proposed to support the reliable clustering of connected autonomous vehicles. The cognitive engines recognize the driving modes to group vehicles with a similar driving mode into a relatively stable cluster. In addition, we formulate the stability and survival time of clusters and analyze the communication performance of the clustering mechanism. Simulation results show that the proposed mechanism improves the reliable communication throughput and average cluster lifetime by approximately 14.4% and 11.5% respectively compared to the state-of-the-art approaches. |
format | Online Article Text |
id | pubmed-8621695 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86216952021-11-27 An Intelligent Multimode Clustering Mechanism Using Driving Pattern Recognition in Cognitive Internet of Vehicles Chang, Huigang Ning, Nianwen Sensors (Basel) Article Connected autonomous vehicles can leverage communication and artificial intelligence technologies to effectively overcome the perceived limitations of individuals and enhance driving safety and stability. However, due to the high dynamics of the vehicular network and frequent interruptions and handovers, it is still challenging to provide stable communication connections between vehicles, which is likely to cause disasters. To address this issue, in this paper, we propose an intelligent clustering mechanism based on driving patterns in heterogeneous Cognitive Internet of Vehicles (CIoVs). In the proposed approach, we analyze the driving mode containing multiple feature parameters to accurately capture the driving characteristics. To ensure the accuracy of pattern recognition, a genetic algorithm-based neural network pattern recognition algorithm is proposed to support the reliable clustering of connected autonomous vehicles. The cognitive engines recognize the driving modes to group vehicles with a similar driving mode into a relatively stable cluster. In addition, we formulate the stability and survival time of clusters and analyze the communication performance of the clustering mechanism. Simulation results show that the proposed mechanism improves the reliable communication throughput and average cluster lifetime by approximately 14.4% and 11.5% respectively compared to the state-of-the-art approaches. MDPI 2021-11-15 /pmc/articles/PMC8621695/ /pubmed/34833664 http://dx.doi.org/10.3390/s21227588 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chang, Huigang Ning, Nianwen An Intelligent Multimode Clustering Mechanism Using Driving Pattern Recognition in Cognitive Internet of Vehicles |
title | An Intelligent Multimode Clustering Mechanism Using Driving Pattern Recognition in Cognitive Internet of Vehicles |
title_full | An Intelligent Multimode Clustering Mechanism Using Driving Pattern Recognition in Cognitive Internet of Vehicles |
title_fullStr | An Intelligent Multimode Clustering Mechanism Using Driving Pattern Recognition in Cognitive Internet of Vehicles |
title_full_unstemmed | An Intelligent Multimode Clustering Mechanism Using Driving Pattern Recognition in Cognitive Internet of Vehicles |
title_short | An Intelligent Multimode Clustering Mechanism Using Driving Pattern Recognition in Cognitive Internet of Vehicles |
title_sort | intelligent multimode clustering mechanism using driving pattern recognition in cognitive internet of vehicles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621695/ https://www.ncbi.nlm.nih.gov/pubmed/34833664 http://dx.doi.org/10.3390/s21227588 |
work_keys_str_mv | AT changhuigang anintelligentmultimodeclusteringmechanismusingdrivingpatternrecognitionincognitiveinternetofvehicles AT ningnianwen anintelligentmultimodeclusteringmechanismusingdrivingpatternrecognitionincognitiveinternetofvehicles AT changhuigang intelligentmultimodeclusteringmechanismusingdrivingpatternrecognitionincognitiveinternetofvehicles AT ningnianwen intelligentmultimodeclusteringmechanismusingdrivingpatternrecognitionincognitiveinternetofvehicles |