Cargando…
Tricholoma matsutake-Derived Peptides Ameliorate Inflammation and Mitochondrial Dysfunction in RAW264.7 Macrophages by Modulating the NF-κB/COX-2 Pathway
Tricholoma matsutake is an edible fungus that contains various bioactive substances, some of them with immunostimulatory properties. Presently, there is limited knowledge about the functional components of T. matsutake. Our aim was to evaluate the protective effects and molecular mechanisms of two T...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621704/ https://www.ncbi.nlm.nih.gov/pubmed/34828964 http://dx.doi.org/10.3390/foods10112680 |
Sumario: | Tricholoma matsutake is an edible fungus that contains various bioactive substances, some of them with immunostimulatory properties. Presently, there is limited knowledge about the functional components of T. matsutake. Our aim was to evaluate the protective effects and molecular mechanisms of two T. matsutake-derived peptides, SDLKHFPF and SDIKHFPF, on lipopolysaccharide (LPS)-induced mitochondrial dysfunction and inflammation in RAW264.7 macrophages. Tricholoma matsutake peptides significantly ameliorated the production of inflammatory cytokines and inhibited the expression of COX-2, iNOS, IKKβ, p-IκB-α, and p-NF-κB. Immunofluorescence assays confirmed the inhibitory effect of T. matsutake peptides on NF-κB/p65 nuclear translocation. Furthermore, the treatment with T. matsutake peptides prevented the accumulation of reactive oxygen species, increased the Bcl-2/Bax ratio, reversed the loss of mitochondrial membrane potential, and rescued abnormalities in cellular energy metabolism. These findings indicate that T. matsutake peptides can effectively inhibit the activation of NF-κB/COX-2 and may confer an overall protective effect against LPS-induced cell damage. |
---|