Cargando…
A Low-Power RRAM Memory Block for Embedded, Multi-Level Weight and Bias Storage in Artificial Neural Networks
Pattern recognition as a computing task is very well suited for machine learning algorithms utilizing artificial neural networks (ANNs). Computing systems using ANNs usually require some sort of data storage to store the weights and bias values for the processing elements of the individual neurons....
Autores principales: | Pechmann, Stefan, Mai, Timo, Potschka, Julian, Reiser, Daniel, Reichel, Peter, Breiling, Marco, Reichenbach, Marc, Hagelauer, Amelie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621881/ https://www.ncbi.nlm.nih.gov/pubmed/34832692 http://dx.doi.org/10.3390/mi12111277 |
Ejemplares similares
-
Dynamic-Load-Enabled Ultra-low Power Multiple-State RRAM Devices
por: Yang, Xiang, et al.
Publicado: (2012) -
Graphene-based RRAM devices for neural computing
por: R, Rajalekshmi T., et al.
Publicado: (2023) -
Voltage and Power-Controlled Regimes in the Progressive Unipolar RESET Transition of HfO(2)-Based RRAM
por: Long, Shibing, et al.
Publicado: (2013) -
Thermal crosstalk in 3-dimensional RRAM crossbar array
por: Sun, Pengxiao, et al.
Publicado: (2015) -
Simulation of Inference Accuracy Using Realistic RRAM Devices
por: Mehonic, Adnan, et al.
Publicado: (2019)