Cargando…
Sampling the Variational Posterior with Local Refinement
Variational inference is an optimization-based method for approximating the posterior distribution of the parameters in Bayesian probabilistic models. A key challenge of variational inference is to approximate the posterior with a distribution that is computationally tractable yet sufficiently expre...
Autores principales: | Havasi, Marton, Snoek, Jasper, Tran, Dustin, Gordon, Jonathan, Hernández-Lobato, José Miguel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621907/ https://www.ncbi.nlm.nih.gov/pubmed/34828173 http://dx.doi.org/10.3390/e23111475 |
Ejemplares similares
-
Variationally Inferred Sampling through a Refined Bound
por: Gallego, Víctor, et al.
Publicado: (2021) -
Refining Protein Subcellular Localization
por: Scott, Michelle S, et al.
Publicado: (2005) -
Constrained Bayesian optimization for automatic chemical design using variational autoencoders
por: Griffiths, Ryan-Rhys, et al.
Publicado: (2019) -
The role of Bézier extraction in adaptive isogeometric analysis: Local refinement and hierarchical refinement
por: de Borst, R., et al.
Publicado: (2017) -
Improving sampling of crystallographic disorder in ensemble refinement
por: Ploscariu, Nicoleta, et al.
Publicado: (2021)