Cargando…
A Method for Estimating the Entropy of Time Series Using Artificial Neural Networks
Measuring the predictability and complexity of time series using entropy is essential tool designing and controlling a nonlinear system. However, the existing methods have some drawbacks related to the strong dependence of entropy on the parameters of the methods. To overcome these difficulties, thi...
Autores principales: | Velichko, Andrei, Heidari, Hanif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621949/ https://www.ncbi.nlm.nih.gov/pubmed/34828130 http://dx.doi.org/10.3390/e23111432 |
Ejemplares similares
-
Discriminating chaotic and stochastic time series using permutation entropy and artificial neural networks
por: Boaretto, B. R. R., et al.
Publicado: (2021) -
Artificial Neural Networks for IoT-Enabled Smart Applications: Recent Trends
por: Velichko, Andrei, et al.
Publicado: (2023) -
On the Possibility of Designing an Advanced Sensor with Particle Sizing Using Dynamic Light Scattering Time Series Spectral Entropy and Artificial Neural Network
por: Chicea, Dan, et al.
Publicado: (2022) -
BBS Posts Time Series Analysis based on Sample Entropy and Deep Neural Networks
por: Chen, Jindong, et al.
Publicado: (2019) -
Estimating Permutation Entropy Variability via Surrogate Time Series
por: Ricci, Leonardo, et al.
Publicado: (2022)