Cargando…
Deep learning-based exchange rate prediction during the COVID-19 pandemic
This study proposes an ensemble deep learning approach that integrates Bagging Ridge (BR) regression with Bi-directional Long Short-Term Memory (Bi-LSTM) neural networks used as base regressors to become a Bi-LSTM BR approach. Bi-LSTM BR was used to predict the exchange rates of 21 currencies agains...
Autores principales: | Abedin, Mohammad Zoynul, Moon, Mahmudul Hasan, Hassan, M. Kabir, Hajek, Petr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622122/ https://www.ncbi.nlm.nih.gov/pubmed/34848909 http://dx.doi.org/10.1007/s10479-021-04420-6 |
Ejemplares similares
-
Effect of twitter investor engagement on cryptocurrencies during the COVID-19 pandemic
por: Bouteska, Ahmed, et al.
Publicado: (2023) -
An interpretable system for predicting the impact of COVID-19 government interventions on stock market sectors
por: Yang, Cai, et al.
Publicado: (2023) -
Fraud Detection in Mobile Payment Systems using an XGBoost-based Framework
por: Hajek, Petr, et al.
Publicado: (2022) -
Dynamic nonlinear connectedness between the green bonds, clean energy, and stock price: the impact of the COVID-19 pandemic
por: Chai, Shanglei, et al.
Publicado: (2022) -
COVID-19 and stock returns: Evidence from the Markov switching dependence approach
por: Bouteska, Ahmed, et al.
Publicado: (2023)