Cargando…
Drug Therapeutic-Use Class Prediction and Repurposing Using Graph Convolutional Networks
An important stage in the process of discovering new drugs is when candidate molecules are tested of their efficacy. It is reported that testing drug efficacy empirically costs billions of dollars in the drug discovery pipeline. As a mechanism of expediting this process, researchers have resorted to...
Autores principales: | Chipofya, Mapopa, Tayara, Hilal, Chong, Kil To |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622176/ https://www.ncbi.nlm.nih.gov/pubmed/34834320 http://dx.doi.org/10.3390/pharmaceutics13111906 |
Ejemplares similares
-
Deep Probabilistic Learning Model for Prediction of Ionic Liquids Toxicity
por: Chipofya, Mapopa, et al.
Publicado: (2022) -
Attention-Based
Graph Neural Network for Molecular
Solubility Prediction
por: Ahmad, Waqar, et al.
Publicado: (2023) -
CSatDTA: Prediction of Drug–Target Binding Affinity Using Convolution Model with Self-Attention
por: Ghimire, Ashutosh, et al.
Publicado: (2022) -
4mCPred-CNN—Prediction of DNA N4-Methylcytosine in the Mouse Genome Using a Convolutional Neural Network
por: Abbas, Zeeshan, et al.
Publicado: (2021) -
iPseU-CNN: Identifying RNA Pseudouridine Sites Using Convolutional Neural Networks
por: Tahir, Muhammad, et al.
Publicado: (2019)